
## 3D - BANDANALYSE



## 1D-Bandstruktur:

Kronig-Penney-Atomkette 'Überschaubare' Bänder, kein band crossing, keine Entartungen.

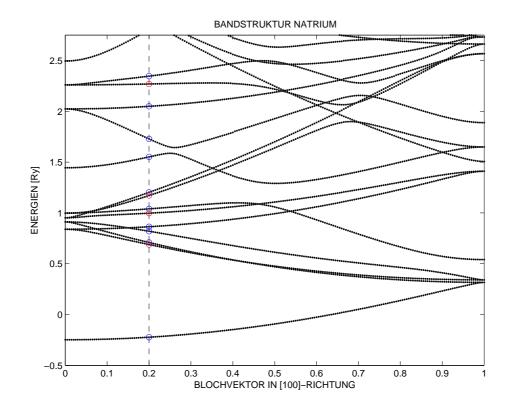


3D-Bandstruktur [100]:

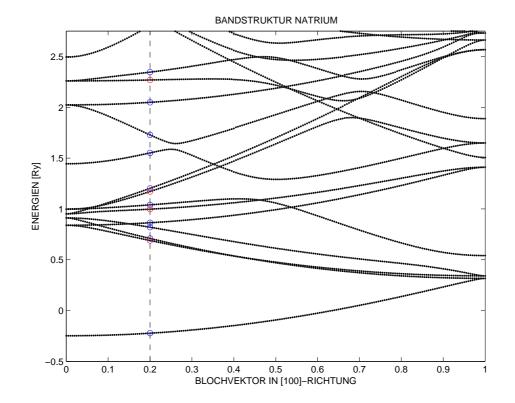
Natrium-Kristall (bcc)

'Band-Spaghetti',
viele band crossings,
Entartungen von Bändern
und Einzelpunkten.

• Jeder Punkt der 3D-Bandstruktur gehört zu einem Elektronen-Blochzustand

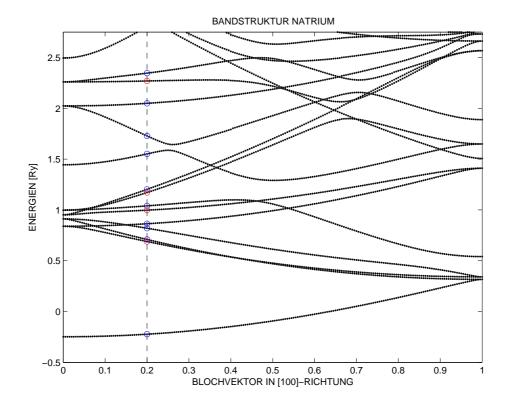

$$\psi_{\mathbf{k},\nu}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\mathbf{k},\nu}(\mathbf{r}).$$

• Die gitterperiodische Modulationsfunktion  $u_{\mathbf{k},\nu}(\mathbf{r})$  kann nach den Vektoren K des reziproken Kristallgitters entwickelt werden:


$$\psi_{\mathbf{k},\nu}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \sum_{\mathbf{K}} U_{\mathbf{k},\nu}(\mathbf{K}) e^{i\mathbf{K}\cdot\mathbf{r}}.$$

• Betrachten wir nun eine Reihe von Energiezuständen für einen fixen Blochvektor,

z.B. für 
$$k_0 = 0.2$$
 (i. E.  $2\pi/a$ ):

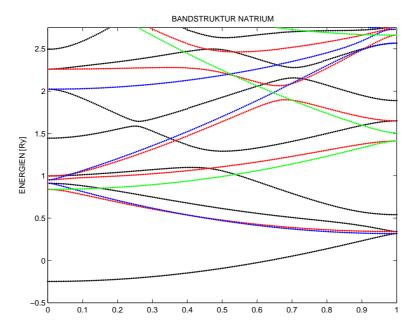



- Die Energie-Eigenwerte sind nach steigenden Energien zu nummerieren, wobei die rot markierten Energien 2-fach entartete Eigenwerte bedeuten.
- Es soll nun eine <u>Klassifikation</u> dieser Blochzustände versucht werden, indem man für alle Energien mit den Nummern 1-19 die ersten 5 Fourierkoeffizienten  $U_{\mathbf{k},\nu}(\mathbf{K}_i),\ i=1,...,5$  anschreibt:



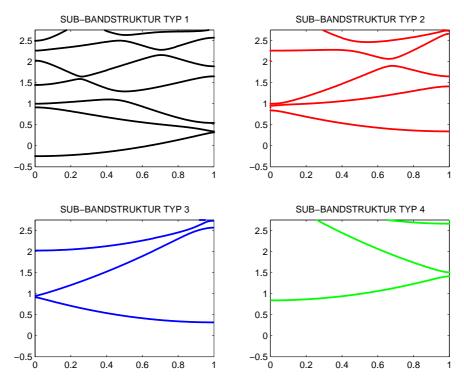
| (1)        | -0.95794<br>(a) | 0.05587<br>(b)  | 0.05587<br>(b)             | 0.05568<br>(c)             | 0.05587<br>(b)              |     | (I)   |
|------------|-----------------|-----------------|----------------------------|----------------------------|-----------------------------|-----|-------|
| (2)<br>(3) | 0<br>0<br>(0)   |                 | 0.11470<br>-0.67371<br>(b) | -0.06072<br>0.04305<br>(c) | -0.11470<br>0.67371<br>(-b) |     | (II)  |
| (4)        | 0 (0)           | -0.49804<br>(a) | 0.49804<br>(-a)            | 0 (0)                      | 0.49804<br>(a)              |     | (III) |
| (5)        | -0.00847<br>(a) | -0.40984<br>(b) | -0.40984<br>(b)            | 0.23661<br>(c)             | -0.40984<br>(b)             | ••• | (I)   |
| (6)        | 0<br>(0)        | 0 (0)           | 0<br>(0)                   | -0.49778<br>(a)            | 0<br>(0)                    |     | (IV)  |

.




• Man kann nun zeigen, daß alle Energiezustände im obigen Bandstruktur-Diagramm einem dieser 4 Muster (I, II, III, IV) von Fourierkoeffizienten zugeordnet werden können.

Um genau zu sein: es gibt noch ein 'Muster' (V), das aber erst bei höheren Energien über 3 Rydberg vorkommt.


- Diese 5 Typen beschreiben die 5 verschiedenen Symmetrie-Eigenschaften der Blochfunktionen für k entlang der [100]-Richtung.
- In den folgenden Diagrammen wird nun der Typus, zu dem ein Blochzustand gehört, durch eine entsprechende Farbe gekennzeichnet:

| TYP | I   | SCHWARZ |         |                      |
|-----|-----|---------|---------|----------------------|
| TYP | II  | ROT     | (2-fach | <pre>entartet)</pre> |
| TYP | III | BLAU    |         |                      |
| TYP | IV  | GRUEN   |         |                      |



Bandstruktur von bcc Natrium entlang der [100]-Richtung. Die Bänder sind gemäß ihrer Symmetrie 'eingefärbt'.

• Im Folgenden sind die 'Sub-Bandstrukturen' der verschiedenen Symmetrie-Typen in eigenen Diagrammen dargestellt. Wie Sie sehen, gibt es bei keiner der 'Sub-Bandstrukturen' ein band crossing, und sie sind (fast) ebenso überschaubar wie 1D-Bandstrukturen:

