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e We want to calculate electronic structure of many-atom systems using
a plane wave basis

e ...this is enabled by pseudopotentials
“Where they come from and what they do in theory and practice”




Key words & ideas

“Bad idea"

Plane waves & full-potential all-electron approach

scale of orbitals

core: size of 1s ~ — bohr
7

valence:  same scale, due to orthogonality
0 number of plane waves < Z°

Hamiltonian matrix
size X Z6, cpu time o< A

[J could do at most diamond (C)

large total energy (components)

GaAs Eiot/pair o~ 10° eV

Puw phonon ~ 30 meV
[1 numerical precision possible, but demanding




“Good news:" Chemical bonding ... determined by valence electrons

e core electrons matter only indirectly

[l removed within | frozen core approximation

effect on valence electrons may be described by a potential
[1 | e-n & e-e core-valence interactions are “linearized”
work with valence electrons only = energy scale & degrees of freedom reduced

e eliminate orthogonalization wiggles in valence wavefunctions by transformation
o to smooth pseudo wavefunctions seeing a weak pseudopotential

[1 | good efficiency | with plane waves

o relativity can be included

e frozen-core & “pseudoization” are approximations
should be independent of system: atom — molecule — solid
[] | transferable pseudopotentials

Pseudopotentials < approximate | electron-ion interaction potentials
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Atom- calculate eigenstates — solve (radial) Kohn-Sham equation: 7" 4 V£ |p4€)

[ r > Tmatch .

From full potentials to pseudopotentials

choose atomic configuration, for some € < O integrate . ..

outward TR (e;0) =0 — R (&;r)|re =0.. match
inward  R"(€;00) =0 — R"(e; r)‘ rs = 00. ..M
.. .outside classical turning point
if | logarithmic derivatives | match ... iterate € until they do,
1 d 1 d _.
R (e; 1) = — R"(e;7)
RO”t(G; T) d’l" Tmatch Rm(e; T) d’l" ,r,match

we get an eigenstate R,; with eigenvalue €,; .

Any potential %48 giving the same logarithmic derivative for
r > ™ gives the same eigenvalue as VA5

Pseudopotential = exact transformation of full potential

>y
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T+ V7P107) = €]

what normalization ?
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Solid - logarithmic derivatives «-» boundary conditions

core P — > cmRi(r)Yim(Q2)
interstitial ¢inter — Z Cklmjl(k"n)yvlm(ﬂ)

wRi(r)| ()

Ry(r) |, ¢ (r) |,
prcore pcore

Match ... like APW

The pseudopotential is “weak” - cancellation theorem

e can bind valence states, but not core states

® in core region potential and kinetic energy

contributions nearly cancel:

Tcore

A [T + VAE} o dr < €
0

e the pseudopotential acts like?!

VP 8Py = VA7) — N ge) (VT 9™) =~ 0

core

attractive repulsive, confined to core

... if there are core states with same angular momentum [

wavefunction u(r)
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1 Philips, Kleinman, Phys Rev 116, 287 (1959); Heine, in Solid State Physics, Vol 24 (Academic, 1970)



Accuracy aspect: Norm-conservation

e 5o far: Pseudopotential o.k. for atom in some chosen electronic configuration

e Pseudopotential must be transferable, i.e. perform correctly in different e

] PS ~ AE eigenvalues < band structure & one-particle energy >’ €;
] electron density <> V" [n;r] and total energy

e |f we impose

¢;.Ds(r) = ¢ (r) | r > r°° <& proper electron density

and norm conservation

nvironments

outside core

rcore rcore

0 0

|67 (r)|?dr = / PP () Pdr e (67|6°) = (65| ¢lF)

[1 get correct “total charge inside core radius” << proper electrostatic potential for r > r
[J boundary conditions of AE and PS orbitals in same way with energy €; &= d¢

rcore

TCOI’G,ei

1 ,d[o
—gloen P | Shmo(en) O

.. over the width of the valence bands — correct scattering properties

[1 PS wavefunctions change similar to AE wavefunctions

o separately for each valence state — [-dependence

|pi(eisT) |2d7'

core




Accuracy aspect: Frozen-core approximation

“Chemically inert core” ... but in fact: core orbitals will change with chemical environment too!

e Effect on total energy?

Etot[n] _ Ecore[nc] ‘|‘ Eva/ence[nv] _I_ Eva/ence—core[nc; ’I’LU]

two step view: change valence density — |change effective potential| — |change core density

[1 second order error f AV Ancdr

. cancels out in total energy differences *
® core regions of neighboring atoms do not overlap

e core/ valence separation often intuitive: core — all filled shells

beware: this choice is not always adequate (semicore states of Ca, Zn, Ga, ... see later)

Lyon Barth, Gelatt, Phys Rev B 21, 2222 (1980).



Example: Pseudopotential for aluminum

320 80 20 .\ (Ry)
T T T T ! I
c 3s pseudo
S I 3p
8 \ 7 \
S /
© : / mid bond
>
® n /
s |
—_— /
._‘g 0 \ /
\ /

© Vo

- \./ —3s all-electron I

potential (hartree)

| full potential
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Constructing normconserving pseudopotentials
Free atom- all-electron full potential —— pseudo valence orbitals & pseudopotential

AE
o Kohn-Sham equations for full potential — eigenstates ¢/~ (r) = UVZT(T)Ylm(Q) ... central field

AE AE

]|l (r) = enpun (1), () =Y filet (o))

occ

1 d” I(1+1) AE; AE
_ 1%
2 dr? + 272 + [

A Relativity: Dirac — scalar relativistic — non-relativistic

Z
A Full potential VAE[nAE; rl=——+ VH[HAE; "“] + VXC[nAE§ ""]
r

IXC in LDA or GGA or ...: take same as in solid etc.

e Pseudo atom — pseudo valence orbitals ¢;(r) = ul(r)Ylm(Q)

T

1d>  I(l+1)
o e T V)| wi(n) = @), n(r) = filgi)l’

occ

. formally non-relativistic Schrodinger eq.
V*" effective potential (screened pseudopotential)
different for each valence state — [-dependent

lowest state for each [ has no radial nodes — core states gone!



Actual steps in the construction

User chooses: Program follows the recipe:
o 7/ nodeless radial pseudo wavefunctions satisfy conditions ...
® electronic configuration [0 same valence energy levels |€; = €y | ...center of VB's
° valendce sttatej " 0 outside cutoff radius |7{"*| orbitals match
e pseudopotentia ¢
p—> cutsz radii inyepach [ w(r > r*) = uﬁlE(r’")
— (reference energy) ... implies matching of logarithmic derivatives

O norm-conservation | (¢|¢1) = (75 |¢)'") = 1

o (core-valence XC)

o [ :
local potential + constraints for good plane-wave convergence

1(1+1) d2/dr2 w (1)
272 2uy(r)
[1 unscreening with atom’s pseudo valence density — final ionic pseudopotentials for applications

O pararametrize w;(r) and invert Schrédinger eq. V™' (r) = ¢, —

V2 (r) = V7 (r) = Vs r] = V¥ nsr]

2 12
A .. _different schemes around, e.g. Troullier-Martins:  w;(r < 7" “Hlgcoteart...terar

Dy =1 00 o [un(r) — wlf(r)] Lew = 0, n=o,1,..a 0LV (0) = 0

) =71



Transferability

Pseudopotential method | ~_ Test: Logarithmic derivatives
N dia 1 d
_ _ Di(r™%€ e) = LRi(r,e)| .
Reality/ experiment 1 €) Fyle) air 1(rs €) rdiag > p.core
JPtad norm conservation — Dj(e; & d€) = D;(¢; & Se)

-

All-electron method | “

...in practice: over range of valence bands?

o compromise with needed smoothness Aluminum r***=2.9 bohr |_=2
e needed accuracy ~ O(0.1...0.01 eV)

— electronic structure

10

_10 L

_ hesi ti all-electron
cohesive properties  eemiocal
— atomic structure, relaxation, phonons —-— separable

— formation & activation energies, ...

e modifications

— separable potentials (computational)

— core corrections (methodic)

A new materials — GaN (with 3d or not), ...
A new XC functionals — GGA, ...

log derivative (arbitary scale)

Characteristic tests of PP at atomic level? —10  valence state

N

‘ v | ‘
-1.0 0.0 1.0
energy (hartree)



Monitoring transferability

Test: Configurational changes (ASCF) [0 s — p promotion (C, Si, Ge, ...)

e |total energy (“excitations”)
E[n(fr)]
20 -
Ga 4s°4p”
10
% frozen core
=
1’ 0
o
)
-10 pseudopotential
20 - Ga Ga
0 0.5 1

occupancy 4p

1 Grinberg, Ramer, Rappe, Phys Rev B 63,
5031 (1993).

O ionization (Li—Li", Na—Na™,...)

e |eigenvalues (Janak theorem) e |chemical hardness® (response)
OBUL) _ (1) OE(fx) _ Oeilfr)
— ¢ _
O fi Of:0f; Of;
f Ga 4s°4p”
20 - 1.6 -
1 seudopotential _
s :
% ° @ 1.4
s £
o 1 T N
—20 - frozen core < -~ frozen core ™
e 1.2 —relaxed core
40 Ga Ga — - pseudopotential
0 05 1 o o5 1
occupancy 4p occupancy 4p

201102 (2001); Filipetti et al, Phys Rev B 52, 11793 (1995); Teter, Phys Rev B 48,



“Hardness tests” in practice

{ energy error O(a few 10 meV)?} (Eigenvalues match weII?] [Level splitting preserved?}

... PP not worse than frozen core €p — €s

m | ] 40
20 -sp° sp' | Ga sp° Ga
. < 20 - frozen core
<) q) N
g .
£ S R - |
_ 0 T | _
S = { | 5
S -10 2 | " 20
- pseudopotential @ 15 | pd
R | | /
-20 F . 3 i +
0 7 ion excited | Ga' :Ga ->sp 40 Ga Ga —>Sp
‘ ‘ _20 I I % I I I I I I B ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
— . 1 5348667288 1234567809

occupancy 4p configuration configuration



Nonlinear core-valence XC (nlcv XC)

[J  total energy & electronic structure depend just on valence electron density

E[nv] _ Z <¢1|T + 5"‘/ZP5‘¢Z> + /VPS,/oc(r)nv(r)dT + EH[nv] + EXC[nU]

1

e electronic core-valence interactions mimicked by pseudoptential — | different in GGA & LDA!

[J electrostatic part linear in n"
[0 exchange-correlation nonlinear, terms like (n¢ + n?)*? .

e pseudopotential — |linearized core-valence XC

EX = EX[n"] + / n"(r) S: AVX[nS + nY;r]ldr  XC functional

lesaa(r) = V> na;r] — VI nl;r] — VX nl;r] PP unscreening, consistent in LDA or GGA

2

® restoring [nonlinear core-valence XC
XC _ ¢ XCp v c
E7 = E7[n" + ng,l

VZPS’O‘(T) = V" ng;r] — V7] — VX n® + nf;r

LFuchs, Bockstedte, Pehlke, Scheffler, Phys Rev B 57, 2134 (1998).
?Louie, Froyen, Cohen, Phys Rev B 26, 1738 (1982).



Partial core density for nlcv XC

Overlap matters only around core edge ...

[1 can smoothen full core density inside the core
“partial core corrections”

ng(r) — [1=g(ro(r"™ — )| ni(r)

— where 0 < g(7r) < 1 e.g. a polynomial
. ,rn/cv-

is the core cutoff radius

density (bohr )

0.5 .‘ :
- /
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| v rrn(r)
\ \v
\ 5 |
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. where nonlinear core-valence XC makes a difference
Rocksalt (NaCl): *

[1 semi-metal with linearized CV XC (a)
insulator with nonlinear CV XC (b)

[]

[y
o

Energy (eV)
o

r!a
Q

Energy (eV)
S

- |

Zi =

L & K o
==
oﬁ—m P |

—

: / (b)

" i X K I

1Hebenstreit, Scheffler, Phys Rev B 46, 10134 (1992).

binidng energy (eV)

-10

\

\ nlcv LDA
\
\ NaCl
\
‘\‘ a, = 10.66 bohr
\
\ B, = 24 GPa
\\
\
\ E,=6.5eV
\\
lcv LDA AN

8 9 10 11 12
lattice constant (bohr)



... and where linearized core-valence XC is fine

Transferability tests for K:

50
w [J linearized nlcv XC mostly sufficient!
SNV
0 p— — 1% & 2™ row, As. Se, ...
S — “two shell” cases — all transition metals,
> 50
E . _ . " "
= pseudopotential see Cu: 3-4 XC valence-valence interaction
2 -100-
Q) -
K total energy A test calculation helps...
~150 - o
linearized CV XC
-200 e [1 nlcv XC needed:
0 0.5 1 - .,
occupancy 4s — “soft” valence shells (alkali's!)
— extended core states (Zn, Cd, ...)
_2 .
< varying core-valence overlap
3. — spin-density functional calculations!
S (open shell atoms, molecules, MnAs, ...)
(]
@ ] [] turning semi-core into valence states?
3
s 5 — Zn 3d, Ca 3d, Rb 4p, ...
D — Ga 3d, In 4d in lll-nitrides
6 ¢ linearized XC (but not GaP, GaAs, ...)
-7 T T T T T T T T T T
0 ‘ 0.5 1

. a bit system dependent

occupancy 4s




... core-valence interactions

Group-lll nitrides: N 2s resonant with Ga 3d [J Need for nlev XC in |GGA?
o o all-electron
e o pseudopotential calculated vs. experimental lattice constants
3 I I I 3 T T T T T
I | - PW91 GGA 1
5 | InN /| 1
GaN [ = B /O\Q _
I o S
. AIN o. = e —
S 10 4 ] S -1+ .
- @
5 GGA o LDA
S 0+ | R ]
LDA =
J o o
® @) 5] L
-1+9 ¢ y 5L nonlinear CV XC i
_2 I | I | I | I | I | 1 1 1 1
4.4 4.6 4.8 5.0 Na Al Si Ge GaAs

lattice parameter (A)

U satistactory only with cation 3, 4d states nlcv XC not more important in GGA than in LDA!

Beware of frozen core approximation!




Plane-wave convergence — “smoothness”

V>(G) it G)r

[ Nearly free electrons & perturbed plane-waves: i (r) = €™ + Z k+ G2 _ k2

G

[0 for fast convergence reduce high Fourier components of 1> (G) and (G|V™|G’)

e modern norm-conserving schemes are good already *

® ... not perfect: “coreless” 2p & 3d states still somewhat hard

Choose right scheme & (dare to) increase cutoff radii

o 1°-row & 3, 4, 5d elements| Troullier-Martins scheme (flat potential for » — 0)

e |Al, Si, Ga(4d), As, ...| Troullier-Martins & Hamann scheme, ... perform much alike

e |loss in accuracy| <> upper bound for r{**

— poor scattering properties, ... — |atomic transferability tests tell

— artificial overlap with neighbor “cores” ... total energy error AE < [ n(r)AV(r)dr,

N5 dimer: ri** = 1.5 a.u., bondlength d/2 = 1.0 a.u. — binding energy error O (0.1 eV)
. may be acceptable

1Rappe, Raabe, Kaxiras, Joannopoulos, Phys Rev B 41, 1227 (1990); Troullier, Martins, Phys Rev B 43, 1993 (1991); Lin,
Qteish, Payne, Heine, Phys Rev B 47, 4174 (1993).



Plane-wave cutoff in practice

Kinetic energy of valence electrons as measure for

plane-wave cutoff energy | E”Y = Gpp? (Ry):

For the free pseudo atom:

Gpywy G2 o0 ‘S 02 ]

A(Gpy) = P — G - < ]
(Grw) /O lu; 7 (G)| 5 Cu fee ]
9 B .

. for s, p, d electrons E i Diamond i
- _ | GaAs )

S 01/ -

(] i i

Corresponding total energy convergence error : 2 - i
= - )

electrons % i ]

AE(Gpw) ~ Z w; AL (Gpw) S o0& — e oo 67906 o &

i 0 20 40 60 80 100 120

plane—wave cutoff energy (Ry)
. for atom & same as in real system

[0 | gives useful estimate | .. too high/ too low?

[ typically we see converged cohesive
A ... can't tell how much errors cancel out properties for A; < 0.1 eV

Perform convergence tests on your system!




Form of pseudopotential operator in applications

Atom- radial & angular momentum representation

general but naive: V = Z l7im )| Vi, (e, ) [(r'1'm| ... a projector, nonlocal in space
Im,l/!m/
N W, _ — _
o (r|VIF) =|V(r) 6(TT2T) Z Yim ()Y () = V(fr)é(rﬂr) ... local potential
Im e Coulomb, atomic, ...

® same for all [

o (r|V|¥) = Z Y., (Q) Vl(r)é(rrgrl) Yim (') ... our semilocal pseudopotential

Solid etc.- (r|V|F) = >, Vi(r — R;, ' — Ry)
... want reciprocal space representation (G|V|G’) — form factor — like in atom

Need a finite infite sum over /! One could use

lmax l /r»_/r/ /
V) = VB = 1)+ Y 3 i @BV ¥in ().

=0 m=-—1

pseudopotential = local potential | V°°() | + short-range corrections [§V;(r) = Vi(r) — V(r)

... note that one can choose an arbitrary V"°°(r) but ...




.. . semilocal pseudopotentials

Truncation of [-sum for [ > [,,., natural:

o > 1% Vi(r) o« =42 all

T

e high [: repulsive —|—Z(ZTL21) angular Aluminum

momentum barrier 2

oV

S.p

= high-[ partial waves see mostly local potential

[1 allows to save projections by local component

potential (hartree)
o
I

VE(r) = Vige(r) with Loc = Lmax

—4 /~—full potential i
O 1 < lpnax see same V(1) as before 4 - p‘ S
A local potential «<— scattering for [ > [ i« 0 1 2 3 4
(norm-conservation not imposed) radius  (bohr)

A transferability of separable representation

typically { = 0,1,2,(3) s,p,d, (f)




Fully separable

Semilocal potentials:

(GISVIIG!) o [ r2drii(Gr)sVi(r)in ('

matrix multiplications
N =~ O(10°)
size 2 O(10°)

N X N

Separable potentials < factorization:
— [/jl(GT)Xl(r)r2dr"/Xl(r)jl(G/’r)err
[ ]

only scalar products
size N ~ O(10%)

e nonlocal, fully separable pseudopotential

(| V') = (| V' + 6V )
lmax

= V(o (e—x) +)_(ralm) B[ (lmxa|r')

lm

potentials

separable Kleinman-Bylander pseudopotential
< transformation of semilocal 6V, = V|, — V).

[6Viug)
(uiVi|6Viuy)1/2’

x1) = sV™Ix) = E % x1)

SVM = Ixi) B[P (x|

KB-energy: strength of nonlocal vs. local part

(w| S V2 |ug) '/
(ur|x1)

average

KB
By =

KB-cosine

semilocal & nonlocal potential yield same (reference)
valence states; also

(r|6V;" lur) = sVi(r)w(r) =: (r|x)

=> KB-potentials norm-conserving !

note: |%;) = €,—T;—V"°|u;) could be calculated
directly from a chosen local potential



Kleinman-Bylander pseudopotentials at work

Price: full nonlocality — spectral order of
states by radial nodes not guaranteed

unphysical states above/below physical
valence levels possible — “ghost states”

Ghost states detectable in free atom ...

inspect logarithmic derivatives

do analyze the atom’s valence spectrum

. readily avoided by proper choice of
local & nonlocal components

Vi(r) — { V¥ (r), 6Vi(r) }

Energy (eV)

Example: KB-pseudopotential for As
— /B GaAs bandstructure

~10 |

—— proper LDA bands
—-—- wrong KB potential




Analysis of the spectrum of nonlocal Hamiltonians H; = T 4+ V' + |x)) A (x|

O A= EZKB gives the reference valence level | €;

[0 can compare spectra for [1 A = O (local potential only) gives €;(0)

[0\ arbitrary (with nonlocal potential) gives €;(\)

O for |\, E® < 0|have &(\) < &(0) < &(N)...

[] not told by ghost state criteria!

no ghost if €, < €3(0) ghost if ¢, > €,(0)

Instead diagonalize H;

— spectrum of bound states
[J used as ghost state criteria in fhi98PP (pswatch)

[ for any |\, EZKB > 0| spectra ordered like L i 1|
i A Higher levels 0.k. too? energy i

Ef® . €1(N) EZKB ...... €2(N) i s-state p-state i

0 €1(0) 0 €2(0) . AE SL NL AE SL NL |
B ___&(\) =« Eff __ &)=« | | |

0 &(0) 0 &(0) | |
E/® &(N) O T T e e e |

0 €0(0) i ------ =TT i

no ghost if €, < €1(0) ghost if ¢, > €1(0) i D--l-- i

LGonze, Stumpf, Scheffler, Phys Rev B 16, 8503 (1992)



Ghost states

Seen in logarithmic derivatives . .. ...where they occur, how to avoid them?

[J local potential ljoc = lmax = 2 saves computing

all-electron
o . 4 . 3]
semilocal O unproblematic: 15 & 2™ row, (earth-) alkali’s

—-— separable

[ | strong nonlocality (large | E{®|) can cause ghosts

“artifically:" =~ zero denominator in E;® (KB-cos)
Ga, Ge, As, Se, ...

vary cutoff radii of local/ nonlocal components

“intrinsically:" numerator of EZKB large

Cu: deep Vzq(r) = E;® > 0 to get 4s right
all 3,4,5d-metals: Cu, Pd, Ag, ...

logarithmic derivative

v ‘ L make local potential repulsive — EZKB <0

-2 -1 0 1 use to s - or p-component !

energy (hartree)
<[ KB-potentials work well in practice =~ —>

o additional projectors in principle a cure too



Other forms of pseudopotentials

Motivation - an exact transformation between AE and PS wavefunctions is®

) = 1™) + 3 {IRNS) — IRY) | (167)

¢ = {1+ 7} ™)
.. PS operators (acting on pseudo wavefunctions) act as
o» = T'0T
= O+ XY {(RIFIOIRY) — (RTIOIRT) (k05

— {...} looks like 3>,/ [x"*)Y V. (x"?

0 Can make ansatz for separable pseudopotential with multiple projectors?

(VI = (e [V Y+ Y (e Ixa) Vi (Xl

nn'=1,2,...

Xni: €.g. atomic functions derived from |X 1) = €, — T, — V’°C|unl>

n = n' = 1 like Kleinman-Bylander pseudopotentials

1 Blschl, Phys Rev B 50, 17953 (1994). 2 Blschl, Phys Rev B 41, 5414 (1990).



[J |Norm-conserving:

all-electron
AE AE Oxygen 2p
an’ — <unl |’u,n/l>7acore o <’U,nl|’u,n/l>7acore =0 _
.. .several reference states possible! _— pseude

(I |“Quasi” norm-conserving:

(Wn| Uy peore + Q1 = <u§lE|u2§l>Tcore

N ultrasoft pseudo

radial wavefunction R, (r)

1

[l |Ultrasoft pseudopotentials

0 1 2
radius (bohr)

[1 logarithmic derivative match as in norm-conserving case

[ density & wavefunction — smooth part + augmentation 1 Vanderbilt, Phys Rev B 41, 7892 (1990);

_ Laasonen et al, Phys Rev B 47, 10142 (1993
reduced plane-wave basis for 1 row & d-metal elements (1993)

< increase in projections, added complexity

Outlook: pseudopotentials justified as approximations to PAW, an exact all-electron approach:

90 [0 e oo
00 00 oo oo

all-electron pseudo valence pseudo valence all-electron

on site on site



Summary

Pseudopotential = electron-ion interaction

e nucleus’ Coulomb attraction + core-valence interaction (orthogonality, electrostatic, XC)
e work throughout periodic table (... almost)

[1 physically motivated approximation

e valence electrons rule chemical bonding
e frozen-core approximation  (depends on system)
e cancellation of potential and kinetic energy in core

[1 well controlled

® norm-conservation  (built in)
e nonlinear core-valence XC  (depends on system)

e proper construction & testing of the pseduopotential

[0 Transferability properties

® logarithmic derivatives  (scattering properties)
e chemical hardness
e plane-wave convergence

[1 Fully separable, nonlocal potentials

e analysis & removal of ghost states
e generalizations



