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Pseudopotentials
in

Electronic Structure Theory

Richard M. Martin

OUTLINE

• Core States - inert but essential

• Methods that keep the core states: APW, LMTO

• Phase shifts for the scattering problem

• Replacing the cores by Pseudopotentials

• Norm-conserving pseudopotentials

• Soft pseudopotentials for k space calculations

• Generation of pseudopotentials in atomic calculations

• Fully separable ”Kleinman-Bylander” pseudopotentials

• Other pseudopotentials

For more complete exposition and many references see
“Electronic Structure: Basic Theory and Practical Methods”

Richard M. Martin, Cambridge University Press, 2004
and

http://ElectronicStructure.org

1



'

&

$

%
Core States - essential, inert

• Highly localized around the nucleus

• Very large binding energies (dominate the total energies of most mate-
rials)

• High Fourier components - would require VERY large numbers of plane
waves if done in plane wave calculations (> 106)

• Valence states must be orthogonal to core states - even MORE plane
waves!

Figure 1: Schematic figure of crystal showing atomic-like core regions and
regions between the atoms where the valence electronic states fare modified
to form extended states of the crystal.
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The APW method

• Slater, 1937

• Partition Space into sphere around each atom; interstitial region

• Define basis functions which are plane waves outside the spheres and
augmented functions inside

ψk =
∑

cGψAPW
k+G

where
ψAPW

K = e−iK·r

outside the sphere. (Here K = k + G).

• If the plane wave were continued inside the sphere its representation in
spherical harmonics would be

e−iK·r = 4π
∑

lm

iljl(Kr)Ylm ∗ (θK , φK)Ylm(θ, φ)

• The real solution inside the sphere for a given l at the energy ε has a
radial part Rl(r, ε). Then we can construct

ψAPW
K = 4π

∑

lm

jl(KRs)

Rl(Rs, ε)
ilRl(r, ε)Ylm ∗ (θK , φK)Ylm(θ, φ)

inside the sphere
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APW continued

• The APW function so constructed is continuous (but not the derivative)
and is an APW basis function.

• Since Rl(r, ε) satisfies the Schrödinger Eq. inside the sphere, any com-
bination of the APW’s satisfies the equation.

• A small number of APW’s is sufficient to represent the real wavefunc-
tion, and the secular equation can be written

det||(1
2
|k + G|2 − ε)δG,G′ + V APW

G,G′ (ε)|| = 0.

• A small number of APW’s is sufficient to represent the real wavefunc-
tion, and there is a small secular equation. The price is that the effective
potential must be found as a function of the eigenvalue.

MTO is a muffin tin orbital, which matches the inner solution to a radial
solution of the Helmholz equation instead of plane waves.
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The OPW method

• Herring, 1940

• n OPW is a plane wave which is explicitly made orthogonal to a core
state, treated as a known function (it is very similar to the atomic
function)

ψOPW
k+G (r) = e−iG·r −∑

c

βcψc(r)

or in schematic form
ψ = φ−∑

c

〈ψc|φ〉φ

which is explicitly orthogonal to each ψc.

• the secular equation can be written

det||(1
2
|k + G|2 − ε)δG,G′ + V OPW

G,G′ (ε)|| = 0.

where
V OPW = VG,G′ +

∑
c

(ε− εc)|ψc〉〈ψc|

is a non-local potential operator.
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Scattering and Pseudopotentials

• ANY wavefunction outside the spheres is given correctly if the scatter-
ing phase shifts at the sphere boundary are given correctly. (See, for
example, Schiff)

• Define the phase shifts for each angular momentum, which are only
weakly dependent on energy

• Choose a pseudopotential as any potential which does not have bound
core states but gives the same same phase shifts at the valence state
energies. Then it will give the same eigenvalues.

• Empirical pseudopotentials: Define potentials which give the desired
bands. (Phillips and Kleinman, 1959).

Figure 2: Schematic figure of pseudopotential and pseudofunction. Since
the functions depend upon angular momentum l, the potentials must also
depend on l, i.e., they are non-local).
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Norm-Conserving Pseudopotentials

“Norm-conserving” pseudopotentials (NCPP’s) [Hamann, Schluter, Chi-
ang] and “shape-consistent” [Krauss and Stevens] are the basis of most “ab
initio” pseudopotentials used today. Norm-conservation has the obvious ad-
vantage that the usual normalized functions are defined to have the correct
amount of charge inside the core region. The added advantage (proved on
the following page) is embodied in the relation of norm-conservation and the
first log derivative of the phase shift with respect to the energy. This is im-
portant because the scattering properties of the pseudopotential are correct
not only at a chosen reference energy but also over a range of energies. This
leads to increased “transferability”.

The key steps in construction of a NCPP are:

• Construct pseudopotential from an all-electron calculation on a atom

• Require the pseudopotential to:

– equal the all-electron potential outside the sphere.

– have eigenvalue equal the all-electron valence eigenvalue

– have an eigenfunction whose norm inside the sphere is conserved

• Then the normalized function equals the all-electron function outside
the sphere, the charge inside is the same. It follows that the potential
outside the sphere is the same.

• And the first logarithmic derivative of the phase shift as a function
of energy is the same as for the all-electron case. at the valence en-
ergy. This ensures maximum transferability to situations where the
eigenvalue id changed.

• The resulting potential is l-dependent

V (r, r′) =
∑

lm

Vl(r)δ(r − r′)Ylm(θ, φ)Ylm(θ′, φ′)
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Norm-Conserving Pseudopotentials

Norm-conservation and first energy derivative of phase shift
(Following the proof given by Shirley, et al. and summarized in the book

by Martin.)
A NCPP is equal the all-electron potential outside a “core region” of

radius Rc; inside Rc the potential is chosen to give the desired eigenvalue
and norm. Then ψl,m = r−1φ(r)Pl(cos(θ))exp(imφ) that satisfies the norm-
conservation condition,

Q =
∫ Rc

0
d3rψ|r|2 =

∫ Rc

0
drφ (r)2 , (1)

where Q is the same for the all-eelctron radial orbital φ and the pseudo radial
orbital φPS. This insures that a normalized φPS will equal φ for r ≥ Rc, and
the total charge in the core region is correct.

The radial Schrödinger equation at energy E, which need not be an
eigenenergy. is

−-h2

2me

d2

dr2
φ(r) + (

l(l + 1)

2r2
+ V (r)− E)φ(r) = 0. (2)

In terms of the logarithmic derivative x(r) = φ′(r)/φ(r), this can be written

x′(r) + [x(r)]2 =
l(l + 1)

r2
+ 2(V (r)− E)

Using the relation valid for any function, f ′(r)+2x(r)f(r) = 1
φ(r)2

d
dr

[φ(r)2f(r)],

differentiating the equation for x(r) with respect to E, multiplying by φ(r)2

and integrating, one finds

∂x(R)

∂E
=

1

φ (R)2

∫ R

0
drφ (r)2 =

1

φ (R)2Q(R). (3)

This shows immediately that norm-conservation implies that the first energy
derivative of x(R) is also correct. Since φPS = φ for r ≥ Rc, at the chosen
energy, the change in φPS(r) for r ≥ Rc is given correctly to first order in a
change in the energy.
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Separable Pseudopotentials

• Kleinman-Bylander, 1982

• Form similar to OPW non-local operator form, but taking advantage
of the arbitrariness to create smooth projection operators which lead
to the same phase shifts

•

VKB(r, r′) = V local
KB (r)δ(r− r′) + δVKB(r, r′)

• In operator notation the non-local part is

δVKB(r, r′) =
∑

lm

|δVlφlm〉〈φlmδVl|
〈φlm|Vl|φlm〉

where
φlm(r) = Rl(r)Ylm(θ, φ)

• Obviously gives same answer as ordinary pseudopotential for atom

• Form similar to OPW non-local operator form, but taking advantage
of the arbitrariness to create smooth projection operators which lead
to the same phase shifts

• Can be improved by adding more projection functions

• Works well is solids, molecules. Efficient.

• Potential problem. ”Ghost states” can occur. Can be avoided with
care. Gonze, Stumpf, Scheffler, PRB 44, 9503 (1991).
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Other Recent forms

• Pseudohamiltonians - Bachelet, Ciochetti, Ceperley

– Modify the mass term inside the sphere

– Not as general and accurate as the norm-conserving potentials,
but very useful for Diffusion Monte Carlo

• Vanderbilt ”Ultrasoft” form

– Define an auxiliary function added to the plane waves around each
atom.

– Allows fewer plane waves for a good description.

– In spirit of OPW but with a smooth auxiliary function.
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Useful web sites

• See links at

http://electronicstructure.org/

– Book information

http://electronicstructure.org/book.asp

– Links for Chapter 11, Pseudopotentials:

http://electronicstructure.org/book.asp#CH11-Pseudopotentials

– Links for Chapter 13, Plane waves II:

http://electronicstructure.org/book.asp#CH13-Planewaves-2

• Web interface for generation of pseudopotentials in various formats at
the TDDFT site “Octopus”:

http://www.tddft.org/programs/octopus/pseudo.php

• The Jos Lus Martins site:

http://bohr.inesc.pt/~jlm/pseudo.html

• David Vanderbilt’s Ultrasoft site:

http://www.physics.rutgers.edu/~dhv/uspp/
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