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The Pseudopotential Plane Wave Approach

Bernd Meyer

Chair of Theoretical Chemistry
Ruhr-Universitat Bochum
44780 Bochum, Germany

E-mail: bernd.meyer @theochem.rub.de

The pseudopotential plane wave approach has become one ofd$t widely used methods
for calculating ground state properties of extended systefithin the framework of density
functional theory. The simplicity of plane waves leads toyvefficient numerical schemes for
solving the Kohn—Sham equations, and the employment ofjogmientials guarantees that the
wave functions can be expanded in a relatively small set aigolaves. In this article the
basic expressions for plane—wave—based total energylatideis and a short overview of the
different types of ab initio pseudopotentials will be given

1 Introduction

In the previous chapters the complicated many—body probfestrongly interacting elec-
trons and nuclei has been mapped within the framework of t@-BOppenheimer ap-
proximation and density functional theory onto a problersin§le—particles moving in an
effective external potential for a set of fixed nuclei. Ounaiow is to develop a practical
numerical scheme to solve the resulting single—particlerkéham equations for extended
systems like crystalline solids or liquids.

The most common approach to tackle this problem is to expaadingle—particle
eigenstates of the Kohn—Sham equations into a set of basitsidns. The Schrodinger
equation then transforms into an algebraic equation forettpansion coefficient which
may be solved by various well-established numerical methdd this chapter we will
show that plane waves are a particular well suited set oElfaactions for extended sys-
tems. Plane waves are the exact eigenfunctions of the hamogs electron gas. There-
fore, plane waves are the natural choice for a basis expaotibe electron wave functions
for simple metals where the ionic cores can be viewed asrathall perturbations to the
homogeneous electron gas (“nearly free electron” metatsfar example Ref. 1). Plane
waves are orthonormal and energy—independent. Hence, aipasis set expansion the
Schrodinger equation transforms into a simple matrix mig&ie problem for the expan-
sion coefficients. A further advantage of plane waves is tihey are not biased to any
particular atom. Any region in space is treated on an equalrfg so that calculations
do not have to be corrected for a basis set superposition enace plane waves do not
depend on the positions of the atoms, the Hellmann—Feynheorém can be applied
directly to calculate atomic forces. Even for a non-conmglesis set the Pulay terms

are identical zero.

In practical calculations only plane waves up to a certaitoffwave vector are in-
cluded in the basis set. The convergence of the calculatithsespect to the basis set size
is therefore controlled by a single parameter and can bekeldesimply by increasing the
length of the cutoff wave vector. However, due to the nodaicstire of the valence wave



functions in the core region of the atoms a prohibitivelg&anumber of plane waves would
be needed for a good representation of these fast osailtatieor plane wave approaches
to be of practical use we have to replace the Coulomb potesftitne electron—nucleus
interaction by pseudopotentials. By introducing pseudeptials we are able to achieve
two goals: First, we can remove the core electrons from dautaions. The contribution
of the core electrons to the chemical bonding is negligibiiethey contribute most to the
total energy of the system (typically a thousand times mbam the valence electrons).
Hence, the removal of the core electrons from the calculatieans that total energy dif-
ferences between ionic configurations can be taken betweaeh smaller numbers so that
the required accuracy for the total energy calculationslv@imuch less demanding than
in an all-electron calculation. Second, by introducingioleotentials we replace the true
valence wave functions by so-called pseudo wave functidrishwmatch exactly the true
valence wave functions outside the ionic core region bubadeless inside. These pseudo
wave functions can be expanded using a much smaller numipdaired wave basis states.
A further advantage of pseudopotentials is that relatvisffects can be incorporated eas-
ily into the potential while further treating the valenceatons non—relativistically.

In spite of introducing pseudopotentials, the number ofsbamctionsNV,,, needed
for an accurate calculation is still an order of magnitudgéathan for approaches using
localized orbitals. This disadvantage, however, is moas ttompensated by the possi-
bility to evaluate many expressions with the help of the Famirier Transform (FFT)
algorithm. The most time consuming step in solving the girghrticle Schrodinger equa-
tions is to apply the Hamilton operator to the valence wavecfions. In a traditional
matrix representation of the Hamilton operator this stepescquadratically with the num-
ber of basis functions. With plane waves and the FFT alguorithis operation reduces to
a Npyw In(INyy,) scaling. Hence, for large systems the use of plane wave hasitions
will become much more efficient than localized basis setsthieamore, the total charge
density and the Hartree potential are easily calculatecplae wave representation.

In Section 2 we will introduce the basic notation for desicighinfinitely extended pe-
riodic systems. This can only be a very brief summary. Mottaittecan be found in any
textbook on solid state physics, for example in the bookssifekoft and Mermihor Kit-
tel. We will then show why it is useful to expand the valence wawreefions using a basis
set of plane waves. In Section 3 the basic ideas underlyiesgoit ab initio pseudopoten-
tials will be given. More details on the plane wave pseudeptil method can be found
in the extremely useful review articles of Denteneer andWaaringef, Picketf, Payne
et al® and Marx and Huttér

2 Why Using Plane Waves?

2.1 Supercells

Although we have simplified the complicated many—body peobbf interacting electrons
in the Coulomb potentials of fixed nuclei to a set of singletipke equations, the calcu-
lation of the one—electron wave functions for an extendedeyen infinite) system is still
a formidable task. To make the problem tractable we assuateotir system of interest
can be represented by a box of atoms which is repeated peallydin all three spacial
directions. The box shall be described by three vecipra,, andaz. The volume of the



Figure 1. Schematic illustration of a supercell geomet)yfda a vacancy in a bulk crystalline solid, (b) for a
surface, and (c) for a isolated molecule. The boundarieseo$tipercells are shown by dashed lines.

box is given by
Qc =a - (32 X a3) . (1)

The three vectors define a lattice in real space. Gener@datectorsT are multiples of
the primitive lattice vectors:

T = Nia; + Naag + Nzaz (2

where Ny, Ny, N3 can be any integer number. The box can be, for example, dtiber
primitive unit cell of a crystal or a large supercell contaga sufficient number of inde-

pendent atoms to mimic locally an amorphous solid or a ligiidse. By using supercells
also atomic point defects, surfaces or isolated molecudesbe modeled as illustrated
schematically in Figure 1. It is essential to make the siugllsrtarge enough to prevent the
defects, surfaces or molecules in neighboring cells fraracting appreciably with each
other. The independence of the configurations can be chaegksgimatically by increasing

the volume of the supercell until the computed quantity tdiiest has converged.

2.2 Fourier Representations

The translational symmetry of the atomic arrangements oartre exploited to reduce the
computational cost for solving the Kohn—Sham equationg éffective potential (as well
as the electron density) is a periodic function with the gaidity of the lattice, i.e.

Vet (r + T) = Vegr (r) (3)

for any lattice vectofT' of the form of Eq. (2). Therefor&,g can be expanded into a
Fourier series

Vegt (1) Z;Veﬁ‘(G) eir | Vet (G) = Qi /Q C Veg(r) e CTd3r . (4)

The sum runs over all vectofs which fulfill the conditionG - T = 27 M for all lattice
vectorsT with M being an integer number. The vectdisform a lattice, the so-called
reciprocal lattice, which is generated by the three priraitiectorsh,, by, bs defined by

ai-bj:27r6ij s i,j:1,2,3 . (5)



The volume of the unit cell of the reciprocal lattice is givan

(2m)°®

bl'(b2xb3): Q
c

(6)

2.3 Bloch’s Theorem

The solutions of a single—particle Schrodinger equatiagh e periodic potential are by no
means themselves necessarily periodic. However, the sti@gfels can be chosen in such a
way that associated with each wave functipis a wave vectok to hold

P(r+T) =T y(r) (7)

for every lattice vector® (Bloch’s theorert). From now on all eigenstates of the single—
particle Schrodinger equation will be labeled with its responding vectok. From the
form of the exponential factor in Eq. (7) it is obvious that tralues ok can be restricted
to within one unit cell of the reciprocal lattice. By conviemtthis unit cell is usually taken
to be the first Brillouin zone (B2) Different solutions to the same veclowill be labeled
with the band indey.

Bloch'’s theorem is often stated in an alternative form. Ttapprty in Eq. (7) is equiv-
alent to the statement that all eigenfunctigag of a single—particle Schrodinger equation
with a periodic potential can be written as a periodic fumttiy; modulated by a plane
wave with wave vectok?:

i (r) = € uy(r) . (8)

This allows us to restrict the calculation of the eigenfiomts to within one unit cell. The
form of the eigenfunctions in all other unit cells is detemed by applying Eq. (7). From
now on we will assume that the eigenfunctions are normaligdrespect to a single unit
cell:

/Q W) dPr=1 . ©)

Since the functionsy; are periodic they can be expanded in a set of plane wavestlkrge
with the exponential prefactor we get:

hicj(r) = D cd TG (10)
G

Before we make use of the plane wave expansion of the wavédmsave write the Kohn—
Sham equations of density functional theory in the notatibBloch—states:

(2 Ve () ) s 1) = e v ) 1)
with
Vet (r) = Vext (r) + Vi [n(r)] + Vie[n(r)] (12)
and
Q. )
n(r) =2 @y ;/BZ [ (r)|? O(Er — ex;) d°k . (13)



Vext,» Va andV,, are the external potential of the nuclei, the Hartree ancetohange—
correlation potential, respectively. By the factor of 2 ig. E13) we take the electron spin
into account® is a step function which is one for positive and zero for niggatrguments.
Er is the Fermi energy up to which single—particle states havetoccupied. The Fermi
energy is defined by the number of electrdvisin the unit cell:

/ n(r)d®r=N, . (14)
Q.

For an insulator the Fermi energy lies in a band gap. Heneaakt k—point exactlyV, /2
bands will be occupied. For metals one or more bands crodsetmei energy so that the
number of occupied states will change between k—points.

2.4 k—Point Sampling

By making use of Bloch’s theorem we have transformed the Iprotof calculating an
infinite number of electronic states extended infinitelypase to one of calculating a finite
number of eigenstates at an infinite number of k—points whrehextended over a single
unit cell. At first glance this seems to be only a minor improeat since still an infinite
number of calculations are needed for the different k—goidbwever, the electronic wave
functions at k—points which are close together will be vamjilar. Hence it is possible
to represent the wave functions of a region of k—space by #nevunction at a single
k—point. We thus define a regular meshNjf,,, k—points and replace the integral over the
Brillouin zone by a discrete sum over the chosen k—point mesh

Q 1
c ... O(Bp —ex;) P’k — — 15
(27’(’)3 LZ ( ¥ Ek]) Nkpt ;fk] ( )

The fi; are occupation numbers which are either one or zero. Sesafraines to construct
such k—point meshes have been proposed in the litefaturd/ithin this approximation
the electronic states at only a finite number of k—points aexled to calculate the charge
density and hence the total energy of the solid. The errardad by this approximation
can be reduced systematically by increasing the densityedé+point mesh. For insulators
it turns out that usually only a small number of k—points iguieed to get good converged
results. For increasing size of the supercell the voluméhefBrillouin zone becomes
smaller and smaller (see Eq. (6)). Therefore, with increasupercell size less and less
k—points are needed. From a certain supercell size on ités @iistified to use just a single
k—point, which is usually taken to Be=0 (l'—point approximation). For metallic systems,
on the other hand, much denser k—point meshes are requiredién to get a precise
sampling of the Fermi surface. In these cases the conveggeitit respect to the k—point
density can often be accelerated by introducing fractionatipation numbet$=2

2.5 Jellium Model

Why is it reasonable to expand the electronic wave functimisg a basis set of plane
waves? Let us first consider the very simple example of thiejeimodel (also called the
Sommerfeld theory of metdls In this model only the valence electrons are considered
and the charges of the remaining ionic cores are assumedgjoréad out into a uniform
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Figure 2. Band structure for a jellium model assuming themned electron density and the cubic face—centered
lattice of the “nearly—free electron” metal Al (solid lin€lhe corresponding band structure of a full DFT calcula-
tion is shown by dashed lines. The energy levels are plotdyagome high symmetry lines in the first Brillouin
zone. The horizontal line indicates the Fermi energy.

positive background distribution. The external effecppatential becomes constant and is
set to zero. For the jellium model the Kohn—Sham equationsbeasolved easily. The
eigenstates of the single—particle Schrodinger equation

—— AP (r) = &Yl (r) (16)

are plane waves to a single reciprocal lattice ve@gmwith the eigenvalues describing a
simple quadratic dispersion relation:

I ik+a))r e _ I 2
\/—Q_ce A Ekj_%”k—i_Gj” : (17)
The labeling of the reciprocal lattice vectdss is done in such a way that the eigenvalues
are in increasing order with increasing band ingexWith these solutions the electron
density becomes constant, and the Fermi energy is given by:

i (x) =

N, K[ ,N.\*/?

n(r) = , Er = Y (37r Qc) . (18)
In Figure 2 the band structure of the jellium model is showndaubic face—centered
lattice (fcc) assuming the unit cell volume and the numbevalénce electrons of Al.
The folding of the free—electron parabola into the Brilloubne of the fcc lattice already
creates a surprisingly complex band structure. Note thawesof the energy bands are
highly degenerate since sometimes several different mecép lattice vectors lead to the
same eigenvalue.



2.6 Nearly Free Electrons

If we assume that the true external potential of the ioniesaf the atoms represents only
a weak perturbation to the jellium model, then, taking thguarents from perturbation
theory, it would be quite natural to describe the correspundiave functions by a linear
combination of a few plane waves, and the band structureldltmviate not too much
from the jellium result. Thinking of the Coulomb—nature bétionic core potentials this
seems to be not a very realistic assumption. However, cangpére true band structure of
Al from a full DFT calculation with the free electron bandsHigure 2 reveals a surprising
agreement. Some of the degeneracies of the free electrais bamlifted, but overall there
is a rather close match between the two calculations.

How can this be understood? Though the eigenvalues are ineitsrs the correspond-
ing eigenfunctions are quite different. In the jellium adétion they are nodeless single
plane waves. In the full DFT calculation, on the other hahé,talence wave functions
are composed of thes3and $ Al valence orbitals with nodes and fast oscillations in the
ionic core region. These nodes and oscillations are duesteetiiuirement that the valence
wave functions are orthogonal to the core state. Effegtitleils leads to a repulsion of
the 3 and P electrons from the core region (which can be viewed as a Peplilsion)
so that overall the ionic core of the Al atom indeed behaveeertike a weak perturba-
tion for the valence electrons. However, the nodes andlasoiis of the valence wave
functions are restricted to the small ionic core region. Siet they match rather well the
plane waves of the jellium calculation. Hence it should beside to replace the ionic
core potential by a much weaker potential that reproducastixthe true wave functions
outside the core region to the same eigenvalues, but witelassl wave functions inside
the ionic core. This is the original idea of introducing pdepotentials. In the first ap-
plications pseudopotentials were constructed by explipiojecting out the core electron
contributions (so-called Phillips—Kleinman pseudoptitdst*) or were purely empirie.
Today pseudopotentials are constructed from ab initioutations for isolated atoms. We
will come back to this point in the next section where we idtroe pseudopotentials from
a slightly different point of view. For the moment we will jugsssume that we can always
introduce an appropriate pseudopotential so that the sporeling pseudo wave functions
can be represented by a small set of plane waves.

2.7 Fourier Representation of the Kohn—Sham Equations

In a plane wave representation of the wave functions the K8ham equations assume
a particular simple form. If we insert Eq. (10) into Eq. (1iultiply from left with
exp(—i(k + G')r) and integrate ovar we get the matrix eigenvalue equation

h? : )
> (%Hk +G|daig + Verr (G’ — G)> & =eagyed . (19)
G

In practical calculations the Fourier expansion (Eq. (b®}he wave functions is truncated
by keeping only those plane wave vecttks+ G) with a kinetic energy lower than a given
cutoff valueE,y,:

h2
ok +Gl” < B (20)



The convergence of all calculations with respect to thedsei size can be tested simply
by increasing step by step the plane wave cutoff energy.
The electron density in Fourier representation is given by

n(G) = Ni S Ay (clg,,G)*clg, . (21)
Pt j

G
Since we have truncated the wave functions at a maximum wastwit is obvious from
Eq. (21) that the electron density has only non-vanishingrieéo components up to twice
the length of this cutoff wave vector. In Fourier space tHewuation of the Hartree poten-
tial is particularly simple. It is given by
> N(G)
IGI?
As the electron density, the Hartree potential has a finit&riEo expansion. To calculate

the exchange—correlation potential we have to Fouriersfcam the electron density to
real-space, evaluate the given functional and Fouriestoam back the result.

Vit(G) = 4re (22)

2.8 Fast Fourier Transformation (FFT)

The main advantage of working with plane waves is that th&uatian of various expres-
sions can be speeded up significantly by using FFTs. In péaticsince the wave functions
and the electron density have a finite Fourier representétiis can be done without any
loss in accuracy, as long as we use in our real-space Fouddngce as many grid points
in each spacial direction than the number of points in theriEospace gri¢f. For exam-
ple, the calculation of the electron density according to 24) scales quadratically with
the numbetV,,, of plane waves. However, if we Fourier transform the wavefioms to
real-space (which scales with,,, In( Ny )), calculatdyy; (r)|? on the real-space Fourier
grid (IVpyw scaling) and then Fourier transform back the result we Sagmitly reduce the
computational cost. Along the same arguments we can alsweatie number of calcu-
lations for the evaluation of the terpn ., Ver (G’ — G)clg in Eqg. (19) from aNgW to a
Npw In(Npyw) scaling.

3 Pseudopotentials

3.1 Frozen—Core Approximation

Most physical and chemical properties of crystals deperaltery good approximation
only on the distribution of the valence electrons. The cdeeteons do not participate
in the chemical bond. They are strongly localized aroundriheleus, and their wave
functions overlap only very little with the core electronwgaunctions from neighboring
atoms. Therefore, the distribution of the core electrorsidadly does not change when the
atoms are placed in a different chemical environment. his fustified to assume the core
electrons to be “frozen” and to keep the core electron tistion of the isolated atom in
the crystal environment.

The first advantage of the frozen—core approximation isrthatless electrons have to
be treated and less eigenstates of the Kohn—Sham equagiemsibe calculated. The sec-
ond advantage is that the total energy scale is largely extwhen the core electrons are



Figure 3. Schematic illustration of an atomic all—electveave function (solid line) and the corresponding atomic
pseudo wave function (dashed line) together with the raispeexternal Coulomb potential and pseudopotential.

removed from the calculation which makes the calculatioard@rgy differences between
atomic configurations numerically much more stable.

In principle one might just take the distribution of the cetectrons and combine their
Hartree potential with the Coulomb potential of the nuclémsn ionic core potential.
However, this is not very useful since the valence wave fanststill have to maintain
their nodal structure in order to be orthogonal to the coméest Much more practical is
to replace immediately the ionic core potential by a pseotitial which will lead to
nodeless valence wave functions, as we will show in theiofig.

3.2 Normconserving Pseudopotentials

Present day pseudopotentials are constructed from ab @aitulations for isolated atoms.
Let us assume we have solved the Kohn—Sham equations fagla atom of the chemical
species for which we would like to generate a pseudopoteriitéis can be done easily
since due to the spherical symmetry of atoms the wave fumctian be written as a prod-
uct of a radial function and a spherical harmonic. The Sdimger equation then reduces
to one—dimensional differential equations for the radigdtions which can be integrated
numerically. A typical result for a radial function from guan “all-electron” atom cal-
culation together with the corresponding external Coul@atential is shown in Figure 3.
Our aim is now to replace the effective all-electron potdntiithin a given sphere with
radiusR.,; by a much weaker new potential with a nodeless ground state fuaction
to the same energy eigenvalue as the original all-electeda which matches exactly the
all-electron wave function outsid®.,; (depicted with dashed lines in Figure 3).

Why should this be possible at all? This can be understoodhidydllowing line of
arguments. The radial Schrodinger equation for a fixedmiiateand fixed energy (not



necessarily an eigenvalue) to the angular momeritigra one—dimensional ordinary linear
second order differential equation which has two lineaeehdent solutions. However,
only one of the two solution®,(r), is regular forr — 0. The logarithmic derivative

_ <I>; (Reut; €)
Reut "I)l (Rcut; E)

is therefore a well defined function of the eneegyOn the other hand, for a given energy
and logarithmic derivativé; at R, the solution of the radial Schrodinger equation inside
and outside the sphere is uniquely defined (save a constaat)faThis follows directly
from the properties of one—dimensional second order difféal equations. However, the
solution is only regular for — 0 if the energye and the logarithmic derivativg, fulfill the
relation Eq. (23). From this observation we can concludeithae modify the potential
inside the atomic sphere in such a way that the relafigia) is not changed, the wave
functions outside the sphere remain unchanged.

For the energy of the eigenstate of our all-electron cafiria*" this can be done
in the following way: we replace the all-electron wave fuoet®*F inside the sphere by
an arbitrary smooth nodeless functidnﬁ S with the same logarithmic derivative &
as the original all-electron function. Since tBE® is nodeless we can simply invert the
radial Schrodinger equation with this new function andhwtite eigenvalue*® of the
all-electron calculation to get the potential that has gydlee required property! In fact,
we have a quite large extend of freedom to setup the new pseade function®}™s,
and over the last decades many different recipes have bddishmed how it could be
doné’~24 One further important requirement is the so-called nomseoving condition.
The all-electron and the pseudo wave function inside thmiatephere must have the
same norm to guarantee that both wave functions generatéddeelectron densities in
the outside region. Next to this condition, the additioredicbes of freedom in generating
a suitable pseudopotential can be employed to make the pseawk functions as smooth
as possible.

Up to now we have reproduced the logarithmic derivative eféffective all-electron
potential only for the reference energf®. However, if we change the chemical envi-
ronment of our atom, the eigenstates will be at a slightlfedént energy. Therefore, for
a pseudopotential to be useful it has to be able to reprochedogarithmic derivative
of the all-electron potential over a whole energy range. Witer this energy range the
more “transferable” to other chemical environments is tbeuyglopotential. As it has been
shown, in particular the normconserving condition guagastsuch a transferability. Fur-
thermore, the pseudopotential should be as “soft” as plessiy this we mean that the
number of plane waves required to expand the pseudo wavédanashould be as small
as possible. Both properties, transferability and softnaee closely related to the cutoff
radiusR.,; and compete with each other. Low cutoffs give pseudopatisntiith a very
good transferability. However, increasifidy,; makes the pseudopotentials softer. Usually
one has to find a compromise between the two requirements.ppardimit for Ry is
given by half the distance to the next nearest atom in the gorgiion for which we want
to apply the pseudopotential. If we exceed this value theme'tvbe any region between
the neighboring atoms left where we recover the true alttea wave functions. Hence,
we can not expect anymore to get an accurate descriptioreafttamical bond between
the two atoms.

Li(e) = a4 In ®;(r; )

dr (23)
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3.3 Fully Nonlocal Pseudopotentials

Since the logarithmic derivative in Eq. (23) depends on tigaigar momenturhwe have to
construct a separate pseudopoteritjif (r) for each value of. The full pseudopotential
for our atom therefore has to be a nonlocal operator. Thisiedh the following way:

VS = PS( Zn” . VRS = VRS —VES(r) . (24)

The pseudopotentid}”>(r) to one specific angular momentum (usually the highest value
of [ for which a pseudopotential has been generated) is takestioebso-called local part

of the pseudopotenti&{ S (r). The nonlocal componen 13(7") are defined as the differ-
ences between the originaldepender;’> (r) and this local part of the pseudopotential.
Since aIIVlPS (r) are identical outside ak., the nonlocal components of the pseudopo-
tential are strictly confined withiR,,; . P,isa projection operator which picks out theh
angular momentum component from the subsequent wave éimday this construction

it is guaranteed that when the full pseudopotential opelﬁfé is applied to a general
wave function each angular momentum component of the wawaifin experiences only

its corresponding paft”s (r) of the potential.

Since the projection operatofs act only on the angular variables of the position vec-
tor r the pseudopotentidl s is still a local operator with respect to the radius The
form (Eq. (24)) is therefore called a semilocal pseudop@ken~or numerical efficiency,
however, it would be desirable to have the pseudopotentefilly nonlocal form:

Vioe (r) + Z |8i > Bij < Bj| - (25)

ij

VPS

Thes;(r) are suitably chosen projection function which are stritibalized withinR.,;.
Kleinman and Bylandéf have given a prescription how a semilocal potential of thenfo
(Eg. 24)) can be transformed into a fully nonlocal represiéon. As has been shown by
Vanderbil?” it is also possible to construct directly from an atomic eléetron calcula-
tion a fully nonlocal potential. Basically all present ptaswave—based total energy codes
employ pseudopotentials in the form of Eq. (25).

3.4 Vanderbilt Ultrasoft Pseudopotentials

Very difficult to treat within a pseudopotential scheme dtel@ments with nodeless va-
lence states (in particular those witlp and 37 valence electrons). For those elements
the pseudo and the all-electron wave functions are almestihl. Since these valence
electrons are strongly localized in the ionic core regioanynplane waves are required
for a good representation of their wave function which oftegkes calculations for such
elements prohibitively expensive.

To circumvent this problem Vanderbilt has introduced a ngvetof pseudopotentials,
the so-called ultrasoft pseudopotentials, in which themmamserving requirement has
been relaxetl"?8 Instead of representing the full valence wave function layne waves,
only a small portion of the wave function is calculated wittie Vanderbilt ultrasoft pseu-
dopotential scheme (see dashed line in Figure 4). This altoweduce substantially the
plane wave cutoff energy in the calculations. The price tg pawever, is that the Fourier
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Figure 4. lllustration of a strongly localized valence wéwection inside the atomic core region and the modified
wave function in the Vanderbilt ultrasoft pseudopotergigtheme.

representation of the Kohn—Sham equation becomes morelicateg. First, when the
electron density is calculated we have to add back the pattieotlectron distribution
which is represented by the difference between the solidtle@diashed line in Figure 4
(the so-called augmentation charges). Second, due to ldpeation of the normconserv-
ing condition, the Bloch eigenstatgg; will be not orthonormal anymore. An overlap
matrix has to be introduced and the eigenvalue problem (E%)) (ill transform into a
generalized eigenvalue equation. Third, the nonlocal gfatie pseudopotential becomes
density—dependent. Fourth, due to these modificationiadditterms in the force calcu-
lation have to be evaluated. However, the gain in computaticost by lowering the plane
wave cutoff energy outweigh in many cases the additionalprgational effort which is
required by these modifications.
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