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The Pseudopotential Plane Wave Approach

Bernd Meyer
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Ruhr-Universität Bochum
44780 Bochum, Germany

E-mail: bernd.meyer@theochem.rub.de

The pseudopotential plane wave approach has become one of the most widely used methods
for calculating ground state properties of extended systems within the framework of density
functional theory. The simplicity of plane waves leads to very efficient numerical schemes for
solving the Kohn–Sham equations, and the employment of pseudopotentials guarantees that the
wave functions can be expanded in a relatively small set of plane waves. In this article the
basic expressions for plane–wave–based total energy calculations and a short overview of the
different types of ab initio pseudopotentials will be given.

1 Introduction

In the previous chapters the complicated many–body problemof strongly interacting elec-
trons and nuclei has been mapped within the framework of the Born–Oppenheimer ap-
proximation and density functional theory onto a problem ofsingle–particles moving in an
effective external potential for a set of fixed nuclei. Our aim now is to develop a practical
numerical scheme to solve the resulting single–particle Kohn–Sham equations for extended
systems like crystalline solids or liquids.

The most common approach to tackle this problem is to expand the single–particle
eigenstates of the Kohn–Sham equations into a set of basis functions. The Schrödinger
equation then transforms into an algebraic equation for theexpansion coefficient which
may be solved by various well–established numerical methods. In this chapter we will
show that plane waves are a particular well suited set of basis functions for extended sys-
tems. Plane waves are the exact eigenfunctions of the homogeneous electron gas. There-
fore, plane waves are the natural choice for a basis expansion of the electron wave functions
for simple metals where the ionic cores can be viewed as rather small perturbations to the
homogeneous electron gas (“nearly free electron” metals, see for example Ref. 1). Plane
waves are orthonormal and energy–independent. Hence, upona basis set expansion the
Schrödinger equation transforms into a simple matrix eigenvalue problem for the expan-
sion coefficients. A further advantage of plane waves is thatthey are not biased to any
particular atom. Any region in space is treated on an equal footing so that calculations
do not have to be corrected for a basis set superposition error. Since plane waves do not
depend on the positions of the atoms, the Hellmann–Feynman theorem can be applied
directly to calculate atomic forces. Even for a non-complete basis set the Pulay terms

are identical zero.
In practical calculations only plane waves up to a certain cutoff wave vector are in-

cluded in the basis set. The convergence of the calculationswith respect to the basis set size
is therefore controlled by a single parameter and can be checked simply by increasing the
length of the cutoff wave vector. However, due to the nodal structure of the valence wave
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functions in the core region of the atoms a prohibitively large number of plane waves would
be needed for a good representation of these fast oscillations. For plane wave approaches
to be of practical use we have to replace the Coulomb potential of the electron–nucleus
interaction by pseudopotentials. By introducing pseudopotentials we are able to achieve
two goals: First, we can remove the core electrons from our calculations. The contribution
of the core electrons to the chemical bonding is negligible but they contribute most to the
total energy of the system (typically a thousand times more than the valence electrons).
Hence, the removal of the core electrons from the calculation means that total energy dif-
ferences between ionic configurations can be taken between much smaller numbers so that
the required accuracy for the total energy calculations will be much less demanding than
in an all–electron calculation. Second, by introducing pseudopotentials we replace the true
valence wave functions by so-called pseudo wave functions which match exactly the true
valence wave functions outside the ionic core region but arenodeless inside. These pseudo
wave functions can be expanded using a much smaller number ofplane wave basis states.
A further advantage of pseudopotentials is that relativistic effects can be incorporated eas-
ily into the potential while further treating the valence electrons non–relativistically.

In spite of introducing pseudopotentials, the number of basis functions��� needed
for an accurate calculation is still an order of magnitude larger than for approaches using
localized orbitals. This disadvantage, however, is more than compensated by the possi-
bility to evaluate many expressions with the help of the FastFourier Transform (FFT)
algorithm. The most time consuming step in solving the single–particle Schrödinger equa-
tions is to apply the Hamilton operator to the valence wave functions. In a traditional
matrix representation of the Hamilton operator this step scales quadratically with the num-
ber of basis functions. With plane waves and the FFT algorithm this operation reduces to
a ��� �� ���� � scaling. Hence, for large systems the use of plane wave basisfunctions
will become much more efficient than localized basis sets. Furthermore, the total charge
density and the Hartree potential are easily calculated in aplane wave representation.

In Section 2 we will introduce the basic notation for describing infinitely extended pe-
riodic systems. This can only be a very brief summary. More details can be found in any
textbook on solid state physics, for example in the books of Ashcroft and Mermin1 or Kit-
tel2. We will then show why it is useful to expand the valence wave functions using a basis
set of plane waves. In Section 3 the basic ideas underlying present ab initio pseudopoten-
tials will be given. More details on the plane wave pseudopotential method can be found
in the extremely useful review articles of Denteneer and vanHaeringen3, Pickett4, Payne
et al.5 and Marx and Hutter6.

2 Why Using Plane Waves?

2.1 Supercells

Although we have simplified the complicated many–body problem of interacting electrons
in the Coulomb potentials of fixed nuclei to a set of single–particle equations, the calcu-
lation of the one–electron wave functions for an extended (or even infinite) system is still
a formidable task. To make the problem tractable we assume that our system of interest
can be represented by a box of atoms which is repeated periodically in all three spacial
directions. The box shall be described by three vectors��, �	, and�
 . The volume of the
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Figure 1. Schematic illustration of a supercell geometry (a) for a vacancy in a bulk crystalline solid, (b) for a
surface, and (c) for a isolated molecule. The boundaries of the supercells are shown by dashed lines.

box is given by �� � �� � ��	 � �
 � � (1)

The three vectors define a lattice in real space. General lattice vectors� are multiples of
the primitive lattice vectors:� � ���� � �	�	 � �
�
 � (2)

where��, �	, �
 can be any integer number. The box can be, for example, eitherthe
primitive unit cell of a crystal or a large supercell containing a sufficient number of inde-
pendent atoms to mimic locally an amorphous solid or a liquidphase. By using supercells
also atomic point defects, surfaces or isolated molecules can be modeled as illustrated
schematically in Figure 1. It is essential to make the supercells large enough to prevent the
defects, surfaces or molecules in neighboring cells from interacting appreciably with each
other. The independence of the configurations can be checkedsystematically by increasing
the volume of the supercell until the computed quantity of interest has converged.

2.2 Fourier Representations

The translational symmetry of the atomic arrangements can now be exploited to reduce the
computational cost for solving the Kohn–Sham equations. The effective potential (as well
as the electron density) is a periodic function with the periodicity of the lattice, i.e.	
� �� � � � � 	
� �� � (3)

for any lattice vector� of the form of Eq. (2). Therefore
	
�

can be expanded into a
Fourier series	
� ��� � 
� 	
� �� � ���� � 	
� �� � � ��� ��� 	
� �� � ����� �
 � � (4)

The sum runs over all vectors� which fulfill the condition� � � � ��� for all lattice
vectors� with � being an integer number. The vectors� form a lattice, the so-called
reciprocal lattice, which is generated by the three primitive vectors� �, � 	 , � 
 defined by1

� � � �� � �� ��� � � �  � �� � � ! � (5)
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The volume of the unit cell of the reciprocal lattice is givenby

� � � �� 	 � � 
 � � ��� �
�� � (6)

2.3 Bloch’s Theorem

The solutions of a single–particle Schrödinger equation with a periodic potential are by no
means themselves necessarily periodic. However, the eigenstates can be chosen in such a
way that associated with each wave function� is a wave vector� to hold� �� � � � � ���� � �� � (7)

for every lattice vectors� (Bloch’s theorem1). From now on all eigenstates of the single–
particle Schrödinger equation will be labeled with its corresponding vector�. From the
form of the exponential factor in Eq. (7) it is obvious that the values of� can be restricted
to within one unit cell of the reciprocal lattice. By convention this unit cell is usually taken
to be the first Brillouin zone (BZ)1. Different solutions to the same vector� will be labeled
with the band index .

Bloch’s theorem is often stated in an alternative form. The property in Eq. (7) is equiv-
alent to the statement that all eigenfunctions��� of a single–particle Schrödinger equation
with a periodic potential can be written as a periodic function ��� modulated by a plane
wave with wave vector�1: ��� �� � � ���� ��� �� � � (8)

This allows us to restrict the calculation of the eigenfunctions to within one unit cell. The
form of the eigenfunctions in all other unit cells is determined by applying Eq. (7). From
now on we will assume that the eigenfunctions are normalizedwith respect to a single unit
cell: ��� ���� �� � �	 �
� � � � (9)

Since the functions��� are periodic they can be expanded in a set of plane waves. Together
with the exponential prefactor we get:��� �� � � 
� ���� �� ���� 	� � (10)

Before we make use of the plane wave expansion of the wave functions we write the Kohn–
Sham equations of density functional theory in the notationof Bloch–states:
� �	�
 � � 	
� �� �� ��� �� � � ��� ��� �� � (11)

with 	
� �� � � 	
�� ��� � 	� �� ���� � 	�� �� �� �� (12)

and � �� � � �
��

��� �
 
�
��� ���� �� � �	 � ��� � ��� � �
� � (13)

4



	
��
,
	�

and
	��

are the external potential of the nuclei, the Hartree and theexchange–
correlation potential, respectively. By the factor of 2 in Eq. (13) we take the electron spin
into account.� is a step function which is one for positive and zero for negative arguments.�� is the Fermi energy up to which single–particle states have to be occupied. The Fermi
energy is defined by the number of electrons� � in the unit cell:��� � �� � �
 � � � � � (14)

For an insulator the Fermi energy lies in a band gap. Hence, ateach k–point exactly� �
��

bands will be occupied. For metals one or more bands cross theFermi energy so that the
number of occupied states will change between k–points.

2.4 k–Point Sampling

By making use of Bloch’s theorem we have transformed the problem of calculating an
infinite number of electronic states extended infinitely in space to one of calculating a finite
number of eigenstates at an infinite number of k–points whichare extended over a single
unit cell. At first glance this seems to be only a minor improvement since still an infinite
number of calculations are needed for the different k–points. However, the electronic wave
functions at k–points which are close together will be very similar. Hence it is possible
to represent the wave functions of a region of k–space by the wave function at a single
k–point. We thus define a regular mesh of� ��� k–points and replace the integral over the
Brillouin zone by a discrete sum over the chosen k–point mesh:��

��� �

��� � � � � ��� � ��� � �
� �� �� ��� 
� ��� � � � (15)

The
��� are occupation numbers which are either one or zero. Severalschemes to construct

such k–point meshes have been proposed in the literature7–9. Within this approximation
the electronic states at only a finite number of k–points are needed to calculate the charge
density and hence the total energy of the solid. The error induced by this approximation
can be reduced systematically by increasing the density of the k–point mesh. For insulators
it turns out that usually only a small number of k–points is required to get good converged
results. For increasing size of the supercell the volume of the Brillouin zone becomes
smaller and smaller (see Eq. (6)). Therefore, with increasing supercell size less and less
k–points are needed. From a certain supercell size on it is often justified to use just a single
k–point, which is usually taken to be�=0 (�–point approximation). For metallic systems,
on the other hand, much denser k–point meshes are required inorder to get a precise
sampling of the Fermi surface. In these cases the convergence with respect to the k–point
density can often be accelerated by introducing fractionaloccupation numbers10–13.

2.5 Jellium Model

Why is it reasonable to expand the electronic wave functionsusing a basis set of plane
waves? Let us first consider the very simple example of the jellium model (also called the
Sommerfeld theory of metals1). In this model only the valence electrons are considered
and the charges of the remaining ionic cores are assumed to bespread out into a uniform
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Figure 2. Band structure for a jellium model assuming the valence electron density and the cubic face–centered
lattice of the “nearly–free electron” metal Al (solid line). The corresponding band structure of a full DFT calcula-
tion is shown by dashed lines. The energy levels are plotted along some high symmetry lines in the first Brillouin
zone. The horizontal line indicates the Fermi energy.

positive background distribution. The external effectivepotential becomes constant and is
set to zero. For the jellium model the Kohn–Sham equations can be solved easily. The
eigenstates of the single–particle Schrödinger equation� �	�
 �� �


 ��� ��� � �� 
 ��� � �

 ��� �� � (16)

are plane waves to a single reciprocal lattice vector�� with the eigenvalues describing a
simple quadratic dispersion relation:� �


 ��� �� � � ���� �� ���� � 	� � �� 
 ��� � �	�
 ��� � �� ��	 � (17)

The labeling of the reciprocal lattice vectors�� is done in such a way that the eigenvalues
are in increasing order with increasing band index . With these solutions the electron
density becomes constant, and the Fermi energy is given by:� �� � � � ��� � �� � �	�
 
!� 	 � ��� � 	�
 � (18)

In Figure 2 the band structure of the jellium model is shown for a cubic face–centered
lattice (fcc) assuming the unit cell volume and the number ofvalence electrons of Al.
The folding of the free–electron parabola into the Brillouin zone of the fcc lattice already
creates a surprisingly complex band structure. Note that some of the energy bands are
highly degenerate since sometimes several different reciprocal lattice vectors lead to the
same eigenvalue.
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2.6 Nearly Free Electrons

If we assume that the true external potential of the ionic cores of the atoms represents only
a weak perturbation to the jellium model, then, taking the arguments from perturbation
theory, it would be quite natural to describe the corresponding wave functions by a linear
combination of a few plane waves, and the band structure should deviate not too much
from the jellium result. Thinking of the Coulomb–nature of the ionic core potentials this
seems to be not a very realistic assumption. However, comparing the true band structure of
Al from a full DFT calculation with the free electron bands inFigure 2 reveals a surprising
agreement. Some of the degeneracies of the free electron bands are lifted, but overall there
is a rather close match between the two calculations.

How can this be understood? Though the eigenvalues are very similar, the correspond-
ing eigenfunctions are quite different. In the jellium calculation they are nodeless single
plane waves. In the full DFT calculation, on the other hand, the valence wave functions
are composed of the 3� and 3� Al valence orbitals with nodes and fast oscillations in the
ionic core region. These nodes and oscillations are due to the requirement that the valence
wave functions are orthogonal to the core state. Effectively this leads to a repulsion of
the 3� and 3� electrons from the core region (which can be viewed as a Paulirepulsion)
so that overall the ionic core of the Al atom indeed behaves more like a weak perturba-
tion for the valence electrons. However, the nodes and oscillations of the valence wave
functions are restricted to the small ionic core region. Outside they match rather well the
plane waves of the jellium calculation. Hence it should be possible to replace the ionic
core potential by a much weaker potential that reproduces exactly the true wave functions
outside the core region to the same eigenvalues, but with nodeless wave functions inside
the ionic core. This is the original idea of introducing pseudopotentials. In the first ap-
plications pseudopotentials were constructed by explicitly projecting out the core electron
contributions (so-called Phillips–Kleinman pseudopotentials14) or were purely empiric15.
Today pseudopotentials are constructed from ab initio calculations for isolated atoms. We
will come back to this point in the next section where we introduce pseudopotentials from
a slightly different point of view. For the moment we will just assume that we can always
introduce an appropriate pseudopotential so that the corresponding pseudo wave functions
can be represented by a small set of plane waves.

2.7 Fourier Representation of the Kohn–Sham Equations

In a plane wave representation of the wave functions the Kohn–Sham equations assume
a particular simple form. If we insert Eq. (10) into Eq. (11),multiply from left with��� ��� �� � � � �� � and integrate over� we get the matrix eigenvalue equation


� 
 �	�
 ��� � � ��	 �� �� � 	
� �� � � � �� ���� � ��� ���� � � (19)

In practical calculations the Fourier expansion (Eq. (10))of the wave functions is truncated
by keeping only those plane wave vectors�� � � � with a kinetic energy lower than a given
cutoff value��� : �	�
 ��� � � ��	 � ��� � (20)
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The convergence of all calculations with respect to the basis set size can be tested simply
by increasing step by step the plane wave cutoff energy.

The electron density in Fourier representation is given by� �� � � �
� ��� 
�� ��� 
� �

����� ��� �� ���� � � (21)

Since we have truncated the wave functions at a maximum wave vector it is obvious from
Eq. (21) that the electron density has only non-vanishing Fourier components up to twice
the length of this cutoff wave vector. In Fourier space the calculation of the Hartree poten-
tial is particularly simple. It is given by	� �� � � �� �	 � �� ���� ��

	 � (22)

As the electron density, the Hartree potential has a finite Fourier expansion. To calculate
the exchange–correlation potential we have to Fourier transform the electron density to
real–space, evaluate the given functional and Fourier transform back the result.

2.8 Fast Fourier Transformation (FFT)

The main advantage of working with plane waves is that the evaluation of various expres-
sions can be speeded up significantly by using FFTs. In particular, since the wave functions
and the electron density have a finite Fourier representation this can be done without any
loss in accuracy, as long as we use in our real–space Fourier grid twice as many grid points
in each spacial direction than the number of points in the Fourier space grid16. For exam-
ple, the calculation of the electron density according to Eq. (21) scales quadratically with
the number��� of plane waves. However, if we Fourier transform the wave functions to
real–space (which scales with��� �� ���� �), calculate

���� �� � �	 on the real–space Fourier
grid (��� scaling) and then Fourier transform back the result we significantly reduce the
computational cost. Along the same arguments we can also reduce the number of calcu-
lations for the evaluation of the term�� 	
� �� � � � ����� in Eq. (19) from a� 	�� to a
��� �� ���� � scaling.

3 Pseudopotentials

3.1 Frozen–Core Approximation

Most physical and chemical properties of crystals depend toa very good approximation
only on the distribution of the valence electrons. The core electrons do not participate
in the chemical bond. They are strongly localized around thenucleus, and their wave
functions overlap only very little with the core electron wave functions from neighboring
atoms. Therefore, the distribution of the core electrons basically does not change when the
atoms are placed in a different chemical environment. It is thus justified to assume the core
electrons to be “frozen” and to keep the core electron distribution of the isolated atom in
the crystal environment.

The first advantage of the frozen–core approximation is thatnow less electrons have to
be treated and less eigenstates of the Kohn–Sham equations have to be calculated. The sec-
ond advantage is that the total energy scale is largely reduced when the core electrons are
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Figure 3. Schematic illustration of an atomic all–electronwave function (solid line) and the corresponding atomic
pseudo wave function (dashed line) together with the respective external Coulomb potential and pseudopotential.

removed from the calculation which makes the calculation ofenergy differences between
atomic configurations numerically much more stable.

In principle one might just take the distribution of the coreelectrons and combine their
Hartree potential with the Coulomb potential of the nucleusto an ionic core potential.
However, this is not very useful since the valence wave functions still have to maintain
their nodal structure in order to be orthogonal to the core states. Much more practical is
to replace immediately the ionic core potential by a pseudopotential which will lead to
nodeless valence wave functions, as we will show in the following.

3.2 Normconserving Pseudopotentials

Present day pseudopotentials are constructed from ab initio calculations for isolated atoms.
Let us assume we have solved the Kohn–Sham equations for a single atom of the chemical
species for which we would like to generate a pseudopotential. This can be done easily
since due to the spherical symmetry of atoms the wave functions can be written as a prod-
uct of a radial function and a spherical harmonic. The Schrödinger equation then reduces
to one–dimensional differential equations for the radial functions which can be integrated
numerically. A typical result for a radial function from such an “all–electron” atom cal-
culation together with the corresponding external Coulombpotential is shown in Figure 3.
Our aim is now to replace the effective all–electron potential within a given sphere with
radius� ���

by a much weaker new potential with a nodeless ground state wave function
to the same energy eigenvalue as the original all–electron state which matches exactly the
all–electron wave function outside� ���

(depicted with dashed lines in Figure 3).
Why should this be possible at all? This can be understood by the following line of

arguments. The radial Schrödinger equation for a fixed potential and fixed energy� (not
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necessarily an eigenvalue) to the angular momentum� is a one–dimensional ordinary linear
second order differential equation which has two linear independent solutions. However,
only one of the two solutions,�� �� �, is regular for� � �. The logarithmic derivative

�� �� � � ��� �� �� �� � � � ����� 	
� � � �� �� ��� � � �
�� �� ��� � � � (23)

is therefore a well defined function of the energy�. On the other hand, for a given energy�
and logarithmic derivative

�� at� ���
the solution of the radial Schrödinger equation inside

and outside the sphere is uniquely defined (save a constant factor). This follows directly
from the properties of one–dimensional second order differential equations. However, the
solution is only regular for� � � if the energy� and the logarithmic derivative

�� fulfill the
relation Eq. (23). From this observation we can conclude that if we modify the potential
inside the atomic sphere in such a way that the relation

�� �� � is not changed, the wave
functions outside the sphere remain unchanged.

For the energy of the eigenstate of our all–electron calculation ��
� this can be done
in the following way: we replace the all–electron wave function ��
� inside the sphere by
an arbitrary smooth nodeless function���� with the same logarithmic derivative at� ���
as the original all–electron function. Since the���� is nodeless we can simply invert the
radial Schrödinger equation with this new function and with the eigenvalue��
� of the
all–electron calculation to get the potential that has exactly the required property! In fact,
we have a quite large extend of freedom to setup the new pseudowave function���� ,
and over the last decades many different recipes have been published how it could be
done17–24. One further important requirement is the so-called normconserving condition.
The all–electron and the pseudo wave function inside the atomic sphere must have the
same norm to guarantee that both wave functions generate identical electron densities in
the outside region. Next to this condition, the additional degrees of freedom in generating
a suitable pseudopotential can be employed to make the pseudo wave functions as smooth
as possible25.

Up to now we have reproduced the logarithmic derivative of the effective all–electron
potential only for the reference energy��
� . However, if we change the chemical envi-
ronment of our atom, the eigenstates will be at a slightly different energy. Therefore, for
a pseudopotential to be useful it has to be able to reproduce the logarithmic derivative
of the all–electron potential over a whole energy range. Thewider this energy range the
more “transferable” to other chemical environments is the pseudopotential. As it has been
shown, in particular the normconserving condition guarantees such a transferability. Fur-
thermore, the pseudopotential should be as “soft” as possible. By this we mean that the
number of plane waves required to expand the pseudo wave functions should be as small
as possible. Both properties, transferability and softness, are closely related to the cutoff
radius� ���

and compete with each other. Low cutoffs give pseudopotentials with a very
good transferability. However, increasing� ���

makes the pseudopotentials softer. Usually
one has to find a compromise between the two requirements. An upper limit for � ���

is
given by half the distance to the next nearest atom in the configuration for which we want
to apply the pseudopotential. If we exceed this value there won’t be any region between
the neighboring atoms left where we recover the true all–electron wave functions. Hence,
we can not expect anymore to get an accurate description of the chemical bond between
the two atoms.

10



3.3 Fully Nonlocal Pseudopotentials

Since the logarithmic derivative in Eq. (23) depends on the angular momentum� we have to
construct a separate pseudopotential

	 ��� �� � for each value of�. The full pseudopotential
for our atom therefore has to be a nonlocal operator. This is done in the following way:

�	 �� � 	 ����� �� � � 

�

	 ��� � �� �� �
�� � � 	 ��� � �� �� � � 	 ��� �� � � 	 ���� � �� � � (24)

The pseudopotential
	 ��� �� � to one specific angular momentum (usually the highest value

of � for which a pseudopotential has been generated) is taken to be the so-called local part
of the pseudopotential

	 ����� �� �. The nonlocal components
	 ��� � �� �� � are defined as the differ-

ences between the original�–dependent
	 ��� �� � and this local part of the pseudopotential.

Since all
	 ��� �� � are identical outside of� ���

the nonlocal components of the pseudopo-
tential are strictly confined within� ���

.
�� � is a projection operator which picks out the�–th

angular momentum component from the subsequent wave function. By this construction
it is guaranteed that when the full pseudopotential operator

�	 �� is applied to a general
wave function each angular momentum component of the wave function experiences only
its corresponding part

	 ��� �� � of the potential.
Since the projection operators

�� � act only on the angular variables of the position vec-
tor � the pseudopotential

�	 �� is still a local operator with respect to the radius�. The
form (Eq. (24)) is therefore called a semilocal pseudopotential. For numerical efficiency,
however, it would be desirable to have the pseudopotential in a fully nonlocal form:

�	 �� � 	 ����� �� � � 
��
�� � � � �� � �� � � (25)

The
� � �� � are suitably chosen projection function which are strictlylocalized within� ���

.
Kleinman and Bylander26 have given a prescription how a semilocal potential of the form
(Eq. 24)) can be transformed into a fully nonlocal representation. As has been shown by
Vanderbilt27 it is also possible to construct directly from an atomic all–electron calcula-
tion a fully nonlocal potential. Basically all present plane–wave–based total energy codes
employ pseudopotentials in the form of Eq. (25).

3.4 Vanderbilt Ultrasoft Pseudopotentials

Very difficult to treat within a pseudopotential scheme are all elements with nodeless va-
lence states (in particular those with 2� and 3	 valence electrons). For those elements
the pseudo and the all–electron wave functions are almost identical. Since these valence
electrons are strongly localized in the ionic core region, many plane waves are required
for a good representation of their wave function which oftenmakes calculations for such
elements prohibitively expensive.

To circumvent this problem Vanderbilt has introduced a new type of pseudopotentials,
the so-called ultrasoft pseudopotentials, in which the normconserving requirement has
been relaxed27, 28. Instead of representing the full valence wave function by plane waves,
only a small portion of the wave function is calculated within the Vanderbilt ultrasoft pseu-
dopotential scheme (see dashed line in Figure 4). This allows to reduce substantially the
plane wave cutoff energy in the calculations. The price to pay, however, is that the Fourier
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Figure 4. Illustration of a strongly localized valence wavefunction inside the atomic core region and the modified
wave function in the Vanderbilt ultrasoft pseudopotentialscheme.

representation of the Kohn–Sham equation becomes more complicated. First, when the
electron density is calculated we have to add back the part ofthe electron distribution
which is represented by the difference between the solid andthe dashed line in Figure 4
(the so-called augmentation charges). Second, due to the relaxation of the normconserv-
ing condition, the Bloch eigenstates��� will be not orthonormal anymore. An overlap
matrix has to be introduced and the eigenvalue problem (Eq. (19)) will transform into a
generalized eigenvalue equation. Third, the nonlocal partof the pseudopotential becomes
density–dependent. Fourth, due to these modification additional terms in the force calcu-
lation have to be evaluated. However, the gain in computational cost by lowering the plane
wave cutoff energy outweigh in many cases the additional computational effort which is
required by these modifications.
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