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Density Functional Theory

A brief digression on units...

| will be using atomic units

throughout this presentation. h=
me =1
e=1

length Bohr  0.529 A
energy Hartree 27.2 eV = 627 kcal/mol
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Why wavefunctions are awkward

Why wavefunctions are awkward

Schrodinger's equation is essentially exact for chemical systems
with moderate atomic number:

V2 nZ, Z 1
H=—7+ qNM-. _Z N—» +Z—f =
N<M‘RN_RM‘ Ni Fi—RN‘ i<j 7 = 7l

it = [ (. B YU G 7).

Alas, v is a function in 3n dimensions, which makes
wavefunction-based approaches impractical for large numbers of
electrons—we can't even store the many-body wavefunction.
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Hohenberg-Kohn Theorem

Hohenberg-Kohn Theorem

Hohenberg and Kohn proved that the ground state energy of a
system of electrons in an external potential V/(7) is the minimum
of a universal functional of the electron density

Egouns = min { FI0)] + [ V(Opn(ar}
Thus if we had a decent approximation to F[n(7)] we'd never again

have to worry about those pesky wavefunctions, and could just
work with the electron density.
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The Kohn-Sham approach

The Kohn-Sham approach

FKS[”(F)] =T+ EHartree[n(F)] + Exc[n(F)]

F) = Z wi(7)?
Ty [0 (-5 ) winar
Etartreeln(7)] = / / ,*)”j?d o7

E,c[n(7)] = everything else

I

Note: This is still exact. The approximation will be in E..
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The Kohn-Sham approach

Eigenvalue equation

Minimizing the Kohn-Sham functional leads to solution having the
form of a self-consistent single-partical eigenproblem.

Hspi = €iv;
v2
7_lsp = _7 + VHartree(F) + ch(?)
o O0Ex[n]
Vel ) = 503

Note: Vi is a functional of n(r), so this requires self-consistency.
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The Kohn-Sham approach

Meaning of eigenvalues

,Hsp¢i = €1

o Eigenvalues ¢; is not the energy of an excitated state.
e Eigenfunctions 1); are not actual wavefunctions.

@ “Electron kinetic energy” T is not the total electron kinetic
energy. (Some is hidden in E,.)
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Spin density functional theory

Spin-density functionals

One can alternatively split the total electron density into two parts
an “spin up” density ny(7) and a “spin down" density n|(r).

Frs[m(7), n(F)]l = T + EHartree[n(F)] + Exc[nT(?)a ny (7)]

f):ZWJiT (AP (7)) = ZWML

@ In principle no more exact than ordinary DFT.

@ In practice necesary for magnetic systems, or insulating
systems with an odd number of electrons.
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Exchange-correlation functionals

Exchange-correlation functionals

LDA “Local Density Approximation” This functional is
uniquely determined by the properties of the uniform
electron gas. Usually overbinds by a few percent.

LSDA “Local Spin Density Approximation”
GGA "“Generalized Gradient Approximation” Actually a
class of functionals, which depend on both the

density and its gradient. They tend to correct the
overbinding of LDA, but sometimes overcorrect.

PBE “Perdue-Burke-Ernzerhof” The most commonly use

GGA by physicists, based on an interpolation
between analytically solvable regimes.

Chemists more commonly use empirical functionals such as those
by Becke (e.g. B3LYP—uwhich is actually a hybrid functional), but
don't tend to work well for solids.
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Metals

Metals

When working with metals, one needs to add a “filling factor” f; to
the computation of the density.

n(7) = Z f: [0i(7)?|

For efficiency reasons, when handling metals one generally
introduces an artificial finite electronic “temperature”, with the
result that the filling factor can take intermediate values between 0
and 1.



Density Functional Theory
®0

What DFT can and cannot predict

What DFT can and cannot predict

Fundamentally, DFT can only predict the density and total energy
of a set of electrons under an external potential.

DFT can predict DFT cannot predict

o Total energy o Excited state energies
@ Forces @ Band gap

@ Lattice constants @ Band structures

@ Bond lengths @ Wave functions

o Vibrational frequencies @ Fermi surface

@ Phonon frequencies @ Superconductivity

@ Electron density @ Excitons

@ Static dielectric response @ Electronic transport
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What DFT can and cannot predict

What DFT can predict accurately

Accuracies | expect from LDA calculations (ballpark estimates)

bond length  ~3% too small
bulk modulus  ~10% too high
phonon frequency ~10% too high
energy difference > 1 mHartree
cohesive energy very poor (much too high)

Accuracies for properties that DFT technically does not predict

band gap ~50% too small
band structure qualitatively reasonable
fermi surface qualitatively reasonable




Plane waves

A bit of solid state terminology

Bravais lattice A periodic array of points, defined by three vectors,
which are referred to as “lattice vectors” R.

Reciprocal lattice A bravais lattice that is related to the real space
bravais lattice by G - R = 2mn

Reciprocal space Also known as “k-space”, the space in which
wave vectors live.

k-vector or k-point or “crystal momentum” A quantum number in
periodic systems (see Bloch's theorem).

Brillouin zone Portion of k-space in which the k-vectors live.

Irreducible Brillouin zone Portion of the BZ which cannot be
mapped onto itself by symmetry operations.

Cutoff energy Plane waves having a kinetic energy less than the
cutoff energy are included in the basis. G2/2 < Ect
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Advantages and disadvantages of a plane wave basis

Approches for representing Kohn-Sham orbitals numerically

Basis set methods

@ A linear combination of basis functions.
@ Integrals and derivatives may be computed exactly.

@ The energy is variational.

Finite difference methods

@ Store the actual value of the orbitals at grid points.

@ Both integrals and derivatives are approximate—not
variational in grid spacing.
o Usually easier to parallelize.

@ Easy to systematically improve.

Hybrid methods
See the next presentation.
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Advantages and disadvantages of a plane wave basis

Advantages and disadvantages of a plane wave basis

@ It is simple.

@ All necesary matrix elements can be efficiently computed.

@ The basis doesn't prefer one location over another, so there
are no “Pulay forces”.

@ A single parameter controls convergence of the basis.

Disadvantages

@ Nonlocalized basis functions are hard to parallelize efficiently.

@ Cannot take advantage of vacuum to reduce the basis size.

@ Representing atomic wavefunctions requires a prohibitively
large number of planewaves (kmax x Z).
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Pseudopotential approach

Pseudopotential approach

The pseudopotential approach addresses two problems:

@ Atomic orbitals require a very high cutoff energy.

@ There are lots of boring core states.
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Norm-conserving pseudopotentials

Pseudopotentials
oeo

An effective potential that
e Is generally non-local (one potential per angular momentum /)
@ Reproduces valence orbital eigenvalues exactly
@ Reproduces all-electron potential outside some cutoff radius
@ Creates orbitals that integrate to the same “norm” within the

cutolff radlius.
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Pseudopotential approach

Norm-conserving pseudopotentials

@ “Pauli repulsion” represented by a repulsion in the core region.

@ Additional smoothing for angular momentum channels for
which there are no core electrons (and thus no Pauli

repulsion).
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Pseudopotential flavors

Pseudopotential flavors

Flavors

@ Norm conserving:

o Troullier-Martins
e Rappe
e Hamann

@ Vanderbilt ultrasoft pseudopotentials
@ Projector Augmented Wave (PAW)

@ FHI pseudopotential generating code: fhi98PP
e OPIUM

A\
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Transferability

Transferability of pseudopotentials

A transferable pseudopotential gives correct results in a wide
variety of environments.

Factors affecting transferability
Cutoff radii

@ Partial core correction
@ Reference configuration
()]

Cutoff energy used for actual planewave calculation

The only solution is to test your pseudopotentials!
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