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Practical methods in ab initio lattice dynamics
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Abstract. A popular method of extracting phonon frequencies fromab initio calculations is
to find the equilibrium structure of a material and then build up the matrix of force constants
by calculating forces acting due to small displacements of the atoms. If the range of the force
constants is assumed to be short, as it typically is in parametrized force-model calculations, the
entire dispersion relation can be evaluated from data taken from smallab initio calculations.
In this paper we highlight the practical difficulties introduced by low-symmetry structures with
free internal parameters and present practical solutions to them. By way of example, we present
a number of calculations where solution of these problems is essential. These includeab initio
calculation of phonon dispersion in a non-centrosymmetric structure (silver gallium diselenide)
and good agreement between calculations and neutron scattering data for a structure with free
internal parameters (germanium sulphide).

1. Introduction

Ab initio methods have been very successful in calculating properties of materials to high
accuracy [1]. The vibrational properties of a crystal determine a wide range of macroscopic
behaviour: specific heat, sound velocity and infrared and Raman absorption. In addition,
very low-frequency modes can be associated with phase transformations, while imaginary
frequencies provide an indication that the calculated structure is not the most stable. Finally,
the phonon spectrum enables a good approximation to free energies to be made via the quasi-
harmonic approximation. In view of these properties, calculating phonons fromab initio
calculation has become a very important topic.

Very early work involved calculating the energy of frozen phonons [2, 3]. Here
the eigenvector of the phonon in question was assumed, and the appropriate atomic
displacements frozen in. From a graph of cohesive energy against amplitude the phonon
frequency could then be found without the need for force evaluation. It was demonstrated
early on that using forces provided similar results. More recently, linear response methods
with dielectric screening [4] incorporating iteration to self-consistency [5] have been applied
to obtain phonons of arbitrary wavevector from plane wave electronic structure calculations.

Traditionally, phonon dispersion relations have been calculated by lattice dynamics.
This involves proposing an analytic model for the interactions between atoms, evaluating
the force constants between atoms, constructing the dynamical matrix at a given point in
the Brillouin zone and diagonalizing it. In theab initio method we seek to replace the
analytic model by a full quantum mechanical electronic structure calculation of a supercell
of N atoms.
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This can be done by making a series of small displacements of the atoms, and evaluating
the forces exerted on the other atoms [6, 7]. Each such calculation provides 3N elements
of the force constant matrix, and symmetry can be used to deduce further elements, thus
reducing the number of electronic structure calculations required. It should be noted that
the force constants calculated by this method are not the true atom–atom force constants but
rather represent a sum over supercells of forces between one atom and all periodic images
of another.

Elements of the force constant matrix [8],8iα,jβ (wherei andj label the atoms andα
andβ label Cartesian directions) can be found from the calculated forces on atomj , Fjβ ,
due to a displacementuiα of atom i in directionα:

8iα,jβ = ∂Fjβ

∂uiα
= ∂2E

∂uiα ∂ujβ
(1)

where the dynamical matrix,Diα,jβ(k), is the Fourier transform of8iα,jβ at wavevectork.
In this paper we examine the problem of numerical inaccuracies which occur inab initio
methods and several ways to reduce their effects on lattice dynamics calculations. From
this we also discuss a method for calculating complete dispersion relations based on a
short-range approximation [6, 9, 10]. The majority of empirical models in use assume short-
ranged interactions [11], and as a consequence the force constants between atoms beyond
(typically) the second-neighbour shell are taken as zero. To obtain matrix elements up to a
comparable range byab initio methods thus requires only relatively small calculations.

We illustrate the various points raised in the paper with three examples, based on density
functional theory in the local density approximation (LDA) using the pseudopotential plane
wave method. These are chosen to illustrate the importance of three distinct aspects of the
method, but are also of significant interest in themselves. The effect of force constant matrix
matrix range is examined for the familiar example of silicon; the importance of correcting for
errors is demonstrated for a non-centrosymmetric structure, chalcopyrite GaAgSe2; finally
the importance of cutoff in the range of the force constants is illustrated for GeS, a material
with free internal parameters for which neutron diffraction data are available.

2. Sum rules in the matrix of force constants

We will be concerned with satisfying two properties of the matrix of force constants [8],
8iα,jβ (where i and j label the atoms andα and β label Cartesian directions) which
are difficult to impose simultaneously inab initio lattice dynamics. Firstly, it should be
symmetric because partial differentiation is commutative:

8iα,jβ = 8jβ,iα (2)

although from equation (1) we see that this explicit symmetry is missing when the element
is calculated from the force. Secondly, it should obey the following sum rule which follows
from Newton’s third law:

8iα,iβ = −
∑
j 6=i

8iα,jβ . (3)

It follows from these two rules that:∑
j 6=i

8iα,jβ =
∑
j 6=i

8iβ,jα. (4)

These three rules are true regardless of the actual symmetry of the system under
consideration. If the force calculation is exact, then the rules above are automatically
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satisfied. A difficulty for anab initio calculation is that whereas force constants can be easily
evaluated to arbitrary precision from analytic force models, electronic structure calculation
is a time consuming iterative process and a practical calculation can only be converged to
a finite accuracy.

3. Treatment of errors in ab initio forces

There are several sources of error in theab initio force constants. Since our calculations
are based on the plane-wave pseudopotential DFT method, we discuss this in particular, but
we also make reference to otherab initio techniques where appropriate. There are errors
in the pseudopotential plane-wave method itself, due to treatment of exchange, correlation
and the pseudopotential approximation. These errors do not lead to violation of the sum
rules, and will not be considered here.

Since equation (3) arises from translational invariance, it will be satisfied if all the force
constants can be evaluated from the same calculation, regardless of how well converged
they are. Only the error due to discretization will apply.

However, a single displacement gives only one row of the matrix of force constants.
One column can be deduced from (2) and further elements may be generated by symmetry,
but in general the method of small displacements requires more than one calculation to
evaluate all the force constants. This means in turn that some elements will be calculated
more than once, and that if there are errors, (3) cannot be satisfied for all rows and columns
simultaneously. For example if each row is taken from a single calculation, and hence
satisfies (3), each column must contain elements from different calculations.

Errors which can lead to violation of the sum rules are as follows.

(i) Errors associated with evaluating forces using a finite basis set and a finite k-point
set. Typically these are converged to 10−3 eV Å−1.

Errors of this type are present in anyab initio calculation. The Hellmann–Feynman
theorem demonstrates that errors in the wavefunctions which cause only second-order errors
in the energy lead to first-order errors in the forces, so more stringent convergence is
required.

(ii) Errors in the finite convergence of the structural parameters.If the structure contains
free parameters then the relaxation is performed until the forces on the atoms reach a suitably
small value [12].

(iii) Forces arising from anharmonicity since forces are calculated using finite
displacements.The minimum possible displacement for which the force can be reliably
calculated is governed by the errors in the force calculation. The degree of anharmonicity
is strongly dependent on structure.

(iv) Computational rounding errors and interpolation errors due to the discrete grid on
which the wavefunction is represented [13] since the total energy is not conserved under
a rigid shift of the entire crystal.The theoretical limit on this is set by the interpolation
between FFT grid points, typically of order 10−5 eV Å−1.

In a practical calculation the minimum number of displacements required to build up
the matrix of force constants is determined by crystal symmetry. The cutoff in the range of
the force constants determines the size of the supercell required. To minimize anharmonic
effects, displacements of different sign and magnitude are made. If an element and one
or more of its symmetric equivalents, (i.e. any elements8iα,iβ which must be equal by
symmetry) are calculated directly, equation (2) is satisfied by taking average values.
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Equation (3) can then be satisfied by ignoring the calculated values of8iα,iβ and simply
setting8iα,iβ = −

∑
j 6=i 8iα,jβ . This is equivalent to disregarding the calculated restoring

force on the atom which has been moved. If equation (4) does not hold, this procedure has
the unfortunate effect forα 6= β that it will introduce a violation of equation (2).

Equation (4) is trivially satisfied forα = β, so it is thus only necessary to consider the
caseα 6= β. Since this constraint requires that two sums of elements be equal, there is
no unique way of imposing it. Problems arising from violations of equation (4) have not
previously been discussed because if an atom is sited at a centre of inversion symmetry, equal
and opposite pairs in the sum cancel out exactly regardless of errors and

∑
j 6=i 8iα,jβ = 0

for α 6= β. In these cases all sum rules are automatically satisfied.
We compare two options for dealing with the violation of equation (4) in the case of

non-centrosymmetric crystals. The first is to symmetrize each term between the same atoms
in the off-diagonal sums8iα,jβ = 8iβ,jα. This is equivalent to using a central-force model.
The second option is to evaluate the amount of the violation, and to adjust each non-zero
term in the sum by an identical amount so as to satisfy equation (4). This procedure will
violate the symmetry of the matrix (2), but this violation will be small, a manifestation of
the error in the forces, so a loop to self-consistency of adjustment and symmetrization is
performed before diagonalization. Neither approach requires prior determination of the full
symmetry of the system for each application, unlike the method used in [6].

In what follows we shall examine the different approaches to satisfying the sum rules,
and show that the major effect of errors in the forces is on the acoustic modes.

4. Complete dispersion relations

It is possible to calculate the complete dispersion relation from theab initio force calculation
by making the approximation that the force constants are short ranged. When using periodic
boundary conditions the calculated force constants are actually sums over all repeats of the
simulation supercell

80
iα,jβ =

∑
l

8l,iα,jβ

wherel runs over all repeat cells.
The short-range approximation assumes zero force constants for interactions between

atoms separated by a large enough distance, which in practice is determined by the size of
the simulation.

For most materials, all atoms can be categorized into shells of progressively distant
neighbours with respect to each other. In the particular case of covalently bonded materials
we will demonstrate that it is important to include or exclude an entireshell of neighbours,
defined by the number of bonds required to link atoms, even if some of the interatomic
distances are longer than others.

It will often occur that a calculated matrix element is the sum of two or more elements
from the same shell of similar magnitude and remaining elements which are small. If the
shortest separations are equivalent, half the supercell dimension, then we assume80

iα,jβ to
be a sum over equal elements from each of the equivalent atoms in the shell. The individual
elements are then simply fractions of the whole.

The approximate short-ranged force constants are thus

at short range 8l,iα,jβ = N−180
iα,jβ

at long range 8l,iα,jβ = 0
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whereN is the number of periodic repeats of the atomj which are in the same shell relative
to i.

We notice that this particular short-range approximation does not lead to a violation of
(3), since all force constants are folded into the approximated short-ranged constants. For
purposes of lattice dynamics, the long-range terms are added with phase factors to give
exactly correct0 point phonons.

If the separations are not exactly equal, then a number of schemes can be applied,
ranging from assuming that the force constants fall off as a power law or exponential, to
setting all but the shortest-ranged to zero.

To illustrate the method, we have chosen three examples which highlight the important
aspects of this work—the range of the force constants, the importance of including complete
shells of neighbours and the importance of enforcing the sum rules. In each case force
constants have been calculated by the LDA plane wave pseudopotential method. The
internal and lattice parameters are first relaxed until the residual forces and stresses on
the unit cell are less than 0.001 eV̊A−1; the finite displacements are then made and the
total electronic energy again iterated toward its self-consistent energy minimum without
moving ions until the forces are converged to 0.001 eVÅ−1.

5. Application to silicon

Calculation of phonons in the diamond structure provides a good test of the approximations
used in the method: the LDA pseudopotential method works very well for silicon; since it
has very high symmetry, a single calculation is required to evaluate the force constants for
a given range. Because of translational invariance within this single calculation, all the sum
rules are satisfied automatically. Calculations were performed using a 64-atom supercell,
generating force constants for nine shells of neighbours.

This LDA [14] calculation used a non-local pseudopotential generated by the Kerker [15]
method in Kleinman–Bylander [16] form to describe the ion–valence electron interactions.
The basis set had a kinetic energy cutoff of 150 eV, which converges total energy differences
to better than 0.001 eV/atom. Four specialk-points for Brillouin zone integration were used,
which we find converges the total energy to 0.001 eV/atom.

In figure 1(a)–(d) we show complete dispersion relations calculated from the assumption
of various ranges of interatomic force constants. These ranges were obtained by setting all
elements beyond a certain shell of neighbours to zero, and adjusting the on-diagonal terms
to satisfy equation (3). Failing to make this adjustment leads to major shifts in the acoustic
modes around0 while the optic branches are virtually unaffected. This is easily understood
since violation of equation (3) describes the energy erroneously associated with a rigid shift
of the crystal: the corresponding eigenstates are the acoustic modes at0. Figure 1(e) shows
a comparison between the calculated result and neutron scattering data [17].

The case of near neighbours only (figure 1(a)) is equivalent to a simple network of near-
neighbour springs, and it is interesting that there is no sign of the mechanical instabilities of
this system in the phonon spectrum, because all the unstable modes couple to finite strains.
Incorporating second-neighbour interactions (figure 1(b)) captures most of the essential
features, but when incorporating further shells, convergence is slow and non-monotonic.
Interestingly, including third neighbours in the model makes the spectrum worse. The most
demanding feature is the flat band at TA(X), which requires interactions to eighth neighbours
(fifth-neighbour interactions give a flat band [18], but this becomes peaked when seventh
neighbours are included).
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Figure 1. Calculated phonon dispersion relations for silicon, with elements calculated from a
large (64-atom) supercell to minimize the effects of periodic boundary conditions. The effect of
truncating the range of the force constants at (a) first, (b) second and (c) fourth neighbours are
shown, while the result of including all calculated neighbours is shown in (d). (e) A comparison
of calculated silicon dispersion relation (d) (lines) with neutron scattering data [17] (dots).
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The density of phonon states can also be calculated by this method. Using a grid of 106

k-points a good Brillouin zone integration is obtained. Since it is an integrated quantity,
one might expect that the shape of the density-of-states (DOS) would converge rapidly. As
shown in figure 2 this is not the case: the shape of the DOS varies significantly with the
cutoff of the force constants.

Figure 2. Phonon DOSs for silicon, showing the slow convergence
of the shape of the DOS with the range of the interactions.

A further integrated quantity, the quasiharmonic vibrational free energy, can also be
calculated from the phonon DOS. In contrast to the DOS, this quantity converges very
rapidly as the range of the force constants is increased.

We thus conclude that, while the major features of the dispersion spectrum can be
captured with a second-neighbour model, some subtler features converge very slowly with
the range of the force constants. Moreover, while it is possible to fit subtle features of the
density of states with a fairly short-ranged model, the actual physical cause of these features
is the inherently long-ranged interactions.

6. Application to chalcopyrite

Silver gallium diselenide AgGaSe2 is one of numerous tetrahedral semiconductors which
crystallize in the chalcopyrite structure, the ternary analogue of diamond. The wide variety
of materials which adopt this structure have found applications in LEDs, solar cells and
various nonlinear optic devices.

Calculation of the phonon frequencies in the chalcopyrite structure is complicated, since
it has a non-centrosymmetric structure with free internal parameters. The elements required
to build up the force constant matrix have been taken from the calculation by Karkiet al
[19] usingQc tuned pseudopotential and the LDA for the exchange and correlation. In
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this calculation the plane wave basis set was cut off at 400 eV with the stress corrected
for finite basis set size [20]. The Brillouin zone was sampled at six specialk-points from
a 3× 3× 3 mesh [21] and the structural parameters were relaxed until the forces were
below 0.001 eVÅ−1; the forces for subsequent displacements were converged to 1% of the
maximum force [12].

We use a supercell for this calculation which includes eight atoms, and hence the
short-range approximation includes non-central interactions up to second neighbours. The
symmetry of the system is such that seven separate displacement calculations were required
to calculate all the80

iα,jβ . To minimize anharmonic effects the force constants were
calculated as an average of the forces found for displacements in both positive and negative
directions. Some force constants were also calculated more than once within the seven
displacement calculations, and in these cases the average value was taken.

In figure 3(a) we show the dispersion relations calculated in the short-range
approximation with the raw data, which were first symmetrized by taking averages of8iα,jβ

and8jβ,iα where possible within the minimal set of seven displacements for this symmetry
group. It can be seen that since Newton’s third law is not obeyed the0 acoustic modes are
significantly non-zero.

Figure 3. Phonon dispersion relations calculated for
AgGaSe2 using second-neighbour interactions only:
(a) using raw data with forces converged to 1%;
(b) with an on-diagonal term corrected to obey
equation (3), and a central approximation made to
satisfy equation (4); (c) with an on-diagonal term
corrected to obey equation (3), iterated with a finite
change of all non-zero terms to satisfy equation (4).

If the on-diagonal terms are adjusted to obey Newton’s third law, by setting8iα,iβ =
−∑j 6=i 8iα,jβ , then the dispersion relation in figure 3(c) is obtained (note that this procedure
violates equation (4)). The0-point acoustic modes now have zero frequency, but only
small changes occur in the remainder of the dispersion relation. This suggests that the
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optic frequencies converge more rapidly than the acoustic ones. If we satisfy equation (4)
using the approximation following from central interactions,8iα,jβ = 8iβ,jα, the spectrum
is altered (figure 3(b)) with some bands becoming almost non-dispersive.

If, however, we satisfy equation (4) by adding a constant to each term, the phonon
spectrum is indistinguishable from figure 3(c). This procedure leads to better agreement
with Raman data than the central-force approximation. We conclude that the central-force
approximation is an inappropriate way to enforce equation (4) in chalcopyrite.

Previous workers have characterized the phonons of AgGaSe2 in terms of a three-band
picture [22, 23]. Our results show that this picture, derived from Raman and infrared data
[22, 23], breaks down, although the upper band remains distinct and relatively dispersionless.
The reason for this is that our method probes the whole of the Brillouin zone, while the
experimental probes are restricted to modes at the0 point.

Analysis of the eigenvectors of the dynamical matrix allow us to obtain some insight
into the type of oscillation represented by each band. The upper band consists of modes
primarily involving vibration of one gallium atom, and their quasi-localized nature results
in the small dispersion. Likewise, a low dispersion band comprising primarily of vibrations
of one silver atom is found just below 5 THz. The short-ranged coupling between these
cations and the rest of the lattice illustrates why doping with alternate isoelectronic species
can be attained without significant distortion to the lattice structure, while anion doping is
more difficult.

7. Application to germanium sulphide

Germanium sulphide is an interesting material, which has a layered structure useful for
applications in intercalation compounds. It is a challenge to model since it exhibits both
strong covalent intralayer bonding and weaker interlayer electrostatic interactions. This
leads to a distinct gap in the phonon spectrum between interlayer and intralayer modes.

We have selected GeS because it provides an excellent test of the short-range
approximation, having numerous different neighbour spacings, yet these neighbours can
be categorized by the number of covalent bonds of interlayer crossings between them.

It also requires careful treatment of sum rule violations because it has an inversion centre
(which allows characterization of the modes into Raman and infrared active), but this centre
is not situated at one of the atomic sites (which means that the sum rules are not enforced
by symmetry). Finally, there also exist neutron scattering data for the low-frequency modes
which enable us to compare our results with experiment. The data80

iα,jβ for GeS are taken
from the work of Hsuehet al [7] on an eight-atom unit cell for which all three unit-cell
parameters and all internal parameters were optimized.

The calculations used the LDA approximation to exchange and correlation in the
parametrization of Perdew and Zunger [14]. The plane wave basis set had an energy
cut off at 300 eV, giving approximately 2500 basis functions per wavefunction. Non-local
ionic pseusdopotentials were implemented in the Kleinmann–Bylander [16] form generated
by theQc tuning method [26, 27]. For these pseudopotentials, the 300 eV cutoff converged
the total energy to 10−4 eV/atom.

The Brillouin zone was sampled at eight specialk-points corresponding to a 4× 4× 4
grid [21]: at this sampling density the total energies were converged to 10−4 eV/atom.
The forces and charge density were symmetrized to reflect the symmetry of the distorted
structure for each of the six separate calculations required to obtain all the (non-central)
force constant components.

Figure 4(a) shows the difficulties that can occur from incorrect choice of cutoff of the
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Figure 4. Phonon dispersion relations calculated for GeS: (a) interactions truncated at half the
unit-cell distance, including only the closer second neighbours; (b) interactions extending to all
the second shell of neighbours.

Figure 5. A comparison of calculated dispersion curves for GeS with neutron [28] (non-0),
infrared and Raman [24, 25] (0) measurements at room temperature. Our calculations are at
0 K, and are therefore at slightly higher frequencies than experiment.

force constants. Here we have truncated the interactions at a distance of half the unit cell
rather than including all second covalent neighbours, thus some second-neighbour matrix
elements are zero. The unphysical effect is to produce apparent instabilities in the acoustic
branch, while once again the optic modes are relatively unaffected. A similar effect occurs
in chalcopyrite.

Figure 4(b) shows the calculated dispersion relation, withall covalently bonded second-
neighbour interactions (defined by atoms two covalent bonds apart) included. Good
agreement of thisab initio data set with available Raman, neutron [28] and infrared data
can be seen (figure 5). Figure 4 shows the anticipated distinctive divide between the low-
frequency interlayer and the high-frequency intralayer modes.
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8. Conclusions

We have investigated common numerical inaccuracies inab initio force constants and the
ways in which they manifest themselves in calculated phonon dispersion relations. We
find that the errors introduced into calculation of phonon dispersion relations from noise
in ab initio forces mainly affect the acoustic phonons if the sum rules are not satisfied.
A number of strategies for enforcing these sum rules were used; we found that the most
satisfactory were to set8iα,iβ = −

∑
j 6=i 8iα,jβ (equation (3)) and to add (subtract) a

constant term to (from) each element to satisfy the sum rule of equation 4.
We have also shown that for covalent materials that reasonable phonon dispersion

relations can be obtained from smallab initio calculations (provided complete shells of
neighbours are either included or excluded), and that the force constants must be fairly
short ranged. For fine detail, longer-range interactions may be necessary.

Three systems have been evaluated to show the importance of treating the sum rules
correctly. The standard example of silicon illustrates what can be expected from a model
of finite range. The chalcopyrite calculations show the importance of enforcing the sum
rules to the low-frequency states. The calculation is of intrinsic interest in that it disproves
the ‘three-band’ model of the density of states proposed on the basis of0-point phonons
only. It also illustrates from the dispersionless nature of some of the bands that the anions
behave as though rattling in a confined space, with little coupling of their vibrations to the
rest of the lattice.

The GeS calculation illustrates the importance of defining complete shells of neighbours
by topology rather than purely by distance, and shows good agreement with experimental
data [29]. In this case the two-band picture of the dispersion relation is confirmed, and
calculations to observe the breakdown of this with pressure are anticipated.

We have demonstrated the method using the plane wave pseudopotential method, but
calculating phonon dispersion relations by this method, can be done using other existing
ab initio codes or commercial packages, introducing no new approximations beyond those
of conventional lattice dynamics.
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