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 Neutrons: Properties and  
    Cross Sections 

 
 Excitations in solids 

 
 Triple Axis and  
     Chopper Techniques 

 
 Practical concerns 



235U + n   
g 

daughter nuclei +  
2-3 n + gammas 

 neutrons: 
 
no charge 
s=1/2   
massive: mc2~1 GeV 
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Neutron interactions with 
matter 

• Neutrons interact with… 

• Nucleus 

• Crystal structure/excitations (eg. Phonons) 

• Unpaired electrons via dipole scattering 

• Magnetic structure and excitations 

 

 
 

 

Nuclear scattering Magnetic dipole scattering 

 Properties of the neutron 
 Mass mn =1.675 x 10-27 kg 

 Charge 0 

 Spin-1/2, magnetic moment   n = -1.913 N  

NXS School 



Wavelength-energy relations 
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 Neutron as a wave … 
 Energy (E), velocity (v), wavenumber (k), wavelength () 

Energy (meV) Temperature (K) Wavelength (Å) 

Cold 0.1 – 10 1 – 120 4 – 30 

Thermal 5 – 100 60 – 1000 1 – 4 

Hot 100 – 500 1000 – 6000 0.4 – 1 
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 ~ interatomic spacing    E ~ excitations in condensed matter 



The Basic Experiment: 

(, ) 

Incident Beam:  
 
• monochromatic 
• “white” 
• “pink” 
 

Scattered  Beam:  
 
• Resolve its energy 
• Don’t resolve its energy 
• Filter its energy 
 



Fermi’s Golden Rule  within the 1st Born Approximation 

W = 2 /h   |< f | V | i>|2    (Ef) 

 = W /   = (m/2h2)2  kf / ki   |< f | V | i>|2  

2 / Ef  =  kf/ki  coh/4  N  Scoh(Q, ) 
 
                         + kf/ki incoh/4  N  Sincoh(Q, )  



Nuclear correlation functions 
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

G(r,t) 
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Pair correlation function 
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Differential scattering  
cross-section 
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Nuclear (lattice) excitations 
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 Commonly studied excitations 

 Phonons 

 Librations and vibrations in molecules 

 Diffusion 

 Collective modes in glasses and liquids 

Neutron scattering measures simultaneously the wavevector and energy of 
collective excitations  dispersion relation, (q) 

In addition, local excitations can of course be observed 

 Excitations can tell us about 

 Interatomic potentials & bonding 

 Phase transitions & critical phenomena (soft modes) 

 Fluid dynamics 

 Momentum distributions & superfluids (eg. He) 

 Interactions (eg. electron-phonon coupling) 
 



Atomic diffusion 
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Cocking, J. Phys. C 2, 2047 (1969).. 

Liquid Na 

Auto-correlation function 


r2(t)  6Dt

For long times compared to the collision time, atom diffuses 
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Molecular vibrations 
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Prassides et al., Nature 354, 462 (1991). 
C60 molecule 

 Large molecule, many normal modes 

 Harmonic vibrations can determine interatomic potentials 



2  / a 

2  / a 

Origin of reciprocal space; 
 
Remains fixed for any sample rotation 

Mapping Momentum – Energy (Q-E) space 



Q 

ki 

kf 

-kf 

Bragg diffraction: 
 
Constructive Interference 
 
Q = Reciprocal Lattice Vector 

Elastic scattering : | ki | = | kf | 



Q 

ki 

kf 

-kf 

Bragg diffraction: 
 
Constructive Interference 
 
Q = Reciprocal Lattice Vector 

Elastic scattering : | ki | = | kf | 

2  / a 

a 



Elementary Excitations in Solids 

• Lattice Vibrations (Phonons) 
• Spin Fluctuations (Magnons) 

Energy vs Momentum 
 
• Forces which bind atoms  
   together in solids 



Phonons 
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Lynn, et al., Phys. Rev. B 8, 3493 (1973). 

 Normal modes in periodic crystal  wavevector 

 

 

 Energy of phonon depends on q and polarization 

FCC Brillouin zone 

FCC structure 

  



u(l,t) 
1
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

Longitudinal mode Transverse mode 
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Phonon intensities 
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Guthoff et al., Phys. Rev. B 47, 2563 (1993). 


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More complicated structures 
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Woods, et al., Phys. Rev. 131, 1025 (1963). Optical phonon 

Acoustic phonon 

La2CuO4 

Chaplot, et al., Phys. Rev. B 52, 7230(1995). 
NXS School 



Spin excitations 
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 Spin excitations 
 Spin waves in ordered magnets 

 Paramagnetic & quantum spin fluctuations 

 Crystal-field & spin-orbit excitations 

 Magnetic inelastic scattering can tell us about 
 Exchange interactions 

 Single-ion and exchange anisotropy (determine Hamiltonian) 

 Phase transitions & critical phenomena 

 Quantum critical scaling of magnetic fluctuations 

 Other electronic energy scales (eg. CF & SO) 

 Interactions (eg. spin-phonon coupling) 
 



Spin waves 
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Perring et al., Phys. Rev. Lett. 77, 711 (1996). 

Ferromagnetic 

Shapiro et al., Phys. Rev. B 10, 2014 (1974). 

Antiferromagnetic 

Ferrimagnetic 

McQueeney et al., Phys. Rev. Lett. 99, 246401 (2007). 

Fe3O4 
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Scattering experiments 
Single-crystal 

Instrument and sample (powder or 
single-crystal) determine how (Q,) 
space is sampled 

Powder S(|Q|,) 
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Bragg’s Law: n = 2d sin() 



Bragg’s Law: n = 2d sin() 



| ki | = 2  / i 

| kf | = 2  / f 

Brockhouse’s Triple Axis Spectrometer 



Momentum Transfer: 
 
Q = ki – kf 

kf 

- kf 

ki 

Q 

Energy Transfer: 
 
E = h2/2m (ki

2 – kf
2) 



Two Axis Spectrometer: 
 
•   3-axis with analyser removed 

 
•   Powder diffractometer 
•   Small angle diffractometer 
•   Reflectometers 

 
 
 

Diffractometers often employ working  
assumption that all scattering 

is elastic. 
 



Soller Slits: Collimators 
 
Define beam direction to  
+/- 0.5, 0.75 etc. degrees 



Filters:  
Remove  /n from incident or  
scattered beam, or both 



n = 2d sin() 
 
Get:    , /2 , /3 , etc. 

Single crystal monochromators: 
 
Bragg reflection and harmonic contamination 



Pyrolitic graphite filter: 

E = 14.7 meV 
= 2.37 A 
v = 1.6 km/s 
2 x v = 3.2 km/s  
3 x v = 4.8 km/s 



Constant kf 
Constant ki 

Two different  ways of performing constant-Q scans   



2  / a 

2  / a 

Origin of reciprocal space; 
 
Remains fixed for any sample rotation 

Mapping Momentum – Energy (Q-E) space 







Elementary Excitations in Solids 

• Lattice Vibrations (Phonons) 
• Spin Fluctuations (Magnons) 

Energy vs Momentum 
 
• Forces which bind atoms  
   together in solids 



Constant Q, Constant E 
3-axis technique allow us to 
Put Q-Energy space on a grid, 
And scan through as we wish 
 
 
 

Map out elementary excitations  
In Q-energy space (dispersion  
Surface) 



Samples 
• Samples need to be BIG 

– ~ gram or cc 
– Counting times are long (mins/pt) 

 
• Sample rotation 
• Sample tilt 
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HB3-HFIR 

IN14-ILL 

Co-aligned CaFe2As2 crystals 



Monochromators 

• Selects the incident wavevector 

 

 

 

 

 
• Reflectivity 

• focusing 

• high-order contamination 
eg./2 PG(004) 

 
l 



Q(hkl) 
2

d(hkl)
 2ki sin



Q(hkl) 

Mono d(hkl) uses 

PG(002) 3.353 General 

Be(002) 1.790 High ki 

Si(111) 3.135 No/2 



Detectors 

• Gas Detectors 

• n + 3He  3H + p + 0.764 MeV 

• Ionization of gas 

• e- drift to high voltage anode 

• High efficiency 

 
• Beam monitors 

• Low efficiency detectors for 
measuring beam flux 
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Resolution 

• Resolution ellipsoid 
– Beam divergences 

– Collimations/distances 

– Crystal mosaics/sizes/angles 

 

 

• Resolution convolutions 
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

I(Q0,0) = S(Q0,0) R(QQ0, 0)dQd



Resolution focusing 

• Optimizing peak intensity 

• Match slope of resolution to dispersion 
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Neutrons have mass  
so higher energy means faster – lower energy means slower 

We can measure a neutron’s energy, wavelength by measuring its speed 

v (km/sec) = 3.96 /  (A) 
 
• 4 A neutrons move at ~ 1 km/sec 
• DCS: 4 m from sample to detector 
• It takes 4 msec for elastically  
   scattered 4 A neutrons to travel 4 m 
 
 
•  msec timing of neutrons is easy 
•   E / E ~ 1-3 % - very good ! 

 



Time-of-flight methods 
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velocity 
selector 

sample 

detector banks 

Scattered  
neutrons 

Spallation neutron source Pharos – Lujan Center 

 Effectively utilizes time 
structure of pulsed neutron 
groups 



t 
d

v


m

h
d



















Fermi Choppers 

• Body radius ~ 5 cm 

• Curved absorbing slats 
– B or Gd coated 

– ~mm slit size 

• f = 600 Hz (max) 

• Acts like shutter, Dt ~ s 
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T-zero chopper 

• Background suppression 

• Blocks fast neutron flash 
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Position sensitive detectors 

• 3He tubes (usu. 1 meter) 

• Charge division 

• Position resolution ~ cm 

• Time resolution ~ 10 ns 
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MAPS detector bank 



Sample environment 

 
• Temperature, field, pressure 

• Heavy duty for large 
sample environment 

– CCR 

– He cryostats 

– SC magnets 

– … 

 

• Can be machined from Al 

     ~ neutron transparent 

        relatively easy to work with 
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HB3-HFIR 

IN14-ILL 



Guides 

• Transport beam over long distances 

• Background reduction 

• Total external reflection 

– Ni coated glass 

– Ni/Ti multilayers (supermirror) 
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Size matters 

• Length = resolution 

– Instruments ~ 20 – 40 m long 

– E-resolution ~ 2-4% Ei 

 

• More detectors 
– SEQUOIA – 1600 tubes, 144000 pixels 

– Solid angle coverage 1.6 steradians 

 

• Huge data sets 

• 0.1 – 1 GB 
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SEQUOIA detector 
vacuum vessel 



Kinematic limitations 
• Many combinations of ki,kf for same Q,

– Only certain configurations are used (eg. Ef-fixed) 

 

• Cannot “close triangle” for certain Q,
due to kinematics 

May 31, 2009 NXS School 54 Kinematic limits, Ei=160 meV 

ki 

kf 

Q 

ki kf 

Q 

Minimum accessible Q 
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Data visualization 

• Large, complex data from spallation sources 
• Measure S(Q,) – 4D function 

Ye et al., Phys. Rev. B, 75 144408 (2007). 

La1-xCaxMnO3 
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  Field-induced order in the Pyrochlore Yb2Ti2O7: 
 
  Weak magnetic field // [110] induces LRO 
 
 
 

appearance of long-lived spin waves  
at low T and moderate H  
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