REMARKS AROUND 50 LINES OF MATLAB:
SHORT FINITE ELEMENT IMPLEMENTATION

JOCHEN ALBERTY, CARSTEN CARSTENSEN, STEFAN A. FUNKEN

ABSTRACT. A short Matlab implementation for P;-Q; finite elements on triangles and parallelograms is
provided for the numerical solution of elliptic problems with mixed boundary conditions on unstructured
grids. According to the shortness of the programme and a given documentation, any adaptation from simple
model examples to more complex problems can easily be performed. Numerical examples prove the flexibility

of the Matlab tool.

1. INTRODUCTION

Unlike complex black-box commercial computer codes, this paper provides a simple and short open-
box Matlab implementation of combined Courant’s Py triangles and @1 elements on parallelograms for the
numerical solutions of elliptic problems with mixed Dirichlet and Neumann boundary conditions. Based
on four data files, arbitrary regular triangulations are determined. Instead of covering all kinds of possible
problems in one code, the proposed tool aims to be simple, easy to understand and to modify. Therefore, only
simple model examples are included to be adapted to whatever is needed. In further contributions we provide
more complicated elements, a posteriori error estimators and flexible adaptive mesh-refining algorithms.

Compared to the latest Matlab toolbox [M], our approach is shorter, allows more elements, is easily
adopted to modified problems like convection terms, and is open to easy modifications for basically any type
of finite element.

The rest of the paper is organized as follows. As a model problem, the Laplace equation is described
in Section 2. The discretization is sketched in a mathematical language in Section 3. The heart of this
contribution is the data representation of the triangulation, the Dirichlet and Neumann boundary as the
three functions specifying f, g, and up as described in Section 4 together with the discrete space. The
main steps are the assembling procedure of the stiffness matrix in Section 5, the right-hand side in Section 6
and the incorporation of the Dirichlet boundary conditions in Section 7. A post-processing to preview the
numerical solution is provided in Section 8. (The main program is given partly in these sections and in its
total one page length in the Appendix A.) The applications follow in Section 9, 10, and 11 and illustrate
the tool in a time-depending heat equation, in a non-linear and even in a three-dimensional example.

2. MODEL PROBLEM

The proposed Matlab-program employs the finite element method to calculate a numerical solution U
which approximates the solution u to the two dimensional Laplace problem (P) with mixed boundary
conditions: Let @ C R? be a bounded Lipschitz domain with polygonal boundary I'. On some closed subset
I'p of the boundary with positive length, we assume Dirichlet conditions, while we have Neumann boundary
conditions on the remaining part T := '\ Tp. Given f € L%(Q), up € H(Q) and g € L*(Ty), seek
u € H1(Q) with

(1) —Au = f in Q,

(2) u = up on T'p,
0

(3) 3_2 = g on I'y.

According to the Lax-Milgram lemma, there always exists a weak solution to (1)-(3) which enjoys inner
regularity (i.e. u € HZ_()), and envies regularity conditions owing to the smoothness of the boundary and
the change of boundary conditions.

The inhomogeneous Dirichlet conditions (2) are incorporated through the decomposition v = u — up so

that v=0on Ip,ie,ve HH(Q) ={we H(Q)|w=00nTp}.
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. Then, the weak formulation of the boundary value problem (P) reads: Seek v € H} (), such that
(4) / Vv -Vwdz = / fwdz +/ gwds — / Vup - Vwdzr (we€ H}) (Q)).
Q Q Iy Q

3. GALERKIN DISCRETIZATION OF THE PROBLEM

For the implementation, problem (4) is discretized using the standard Galerkin—-method, where H'(Q)
and H}, () are replaced by finite dimensional subspaces S and Sp = S N H},, respectively. Let Up € S be
a function that approximates up on I'p. (We define Up as the nodal interpolant of up on I'p.) Then, the
discretized problem (Ps) reads: Find V € Sp such that

(5) /VV-VWda::/dem+/ ngs—/VUD-VWdI (W € Sp).
Q Q Tn Q
Let (1, ...,nn) be a basis of the finite dimensional space S, and let (1;,,...,7;,,) be a basis of Sp, where
I'={iy,... iy} C{1,..., N} is an index set of cardinality M < N — 2. Then, (5) is equivalent to
(6) /VV~V77jd1‘:/f77jd1'-|-/ gnjds—/VUD-andl‘ (7).
Q Q Iy Q

Furthermore, let V = Zke] zgnr and Up = Zi\;l Urmni. Then, the equation (6) yields the linear system of
equations

(7) Az = b.
The coefficient matrix A = (Ajz); ker € RMXM and the right-hand side b = (bj)jer € RM are defined as

N
ZUk/ Vn; - Vg dz.
Q

(8) A = / Vn;-Vopde and b; = / I dx—{—/ gn; ds —
@ @ I'n k=1

The coefficient matrix is sparse, symmetric and positive definite, so (7) has exactly one solution 2 € R

which determines the Galerkin solution U = Up + V = Z;-V:l U;n; + Zke] TNk

4. DATA-REPRESENTATION OF THE TRIANGULATION

Suppose the domain Q has a polygonal boundary T', we can cover Q by a regular triangulation 7 of
triangles and quadrilaterals, i.e. Q = Urpes T and each T'is either a closed triangle or a closed quadrilateral.

Regular triagulation in the sense of Ciarlet [Ci] means that the nodes A of the mesh lie on the vertices
of the triangles or quadrilaterals, the elements of the triangulation do not overlap, no node lies on an edge
of a triangle or quadrilateral, and each edge E C T of an element 7' € T belongs either to I'y or to T'p.

Matlab supports reading data from files given in ascii format by .dat files. Fig. 1 shows the mesh which
is described by the following data. The files Coordinates.dat contains the coordinates of each node in the
given mesh. Each row has the form

node number x-coordinate y-coordinate.

Coordinates.dat Y Mo

1 0 0 10 9 8 5
(6]

2 ! 0 11 14 15

3 1.59 0 @ 6

4 2 1 ® o

5 3 1.41 12 13 5

6 3 2 @ N4

73 3 AL To

8 2 3 o2 i3

9 1 3

10 0 3

11 0 2

12 0 1

13 1 1

14 1 2

15 2 2

FiGUrE 1. Example of a Mesh
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In our code we allow subdivision of € into triangles and quadrilaterals. In both cases the nodes are
numbered anti-clockwise. Elements3.dat contains for each triangle the node numbers of the vertices. Each
row has the form

element number nodel node2 node3.
Similiarly, the data for the quadrilaterals are given in Elements4.dat. Here, we use the format

element number nodel node2 node3 node4.

Elements3.dat Elements4.dat
1 2 3 13 1 1 2 13 12
2 3 4 13 2 12 13 14 11
3 4 5 15 3 13 4 15 14
4 5 6 15 4 11 14 9 10
5 14 15 8 9
6 15 6 7 8

Neumann.dat and Dirichlet.dat contain in each row the two node numbers which bound the corre-
sponding edge on the boundary:

Neumann edge number nodel node2 resp. Dirichlet edge number nodel node2.
Neumann.dat Dirichlet.dat
1 5 6 1
2 6 7 2 4 5
31 2 3 7 8
4 2 3 4 8 9
5 9 10
6 10 11
7 11 12
8§ 12 1

The spline spaces S and Sp are globally continous and affine on each triangular element and bilinear
isoparametric on each quadrilateral element. In Fig. 2 we display the hat function 5; are defined for every
node (z;,y;) of the mesh by

ni(zk,u6) =85 (G k=1,...,N).

Ficure 2. Hat Functions

The subspace Sp C S is the spline space which is spanned by all those n; for which (z;,y;) does not lie
on I'p. Then Up, defined as the nodal interpolant of up lies in Sp.

With these spaces S and Sp and their corresponding basis, the integrals in (8) can be calculated as a sum
over all elements and a sum over all edges on T'y, i.e.,

(9) N = 3 [ Vo Tneds,
T

TeT

N
(10) by = Z/Tfnjd:c—f— > /Egnjds—ZUk/Qan~Vnkdm.
' k=1

TeT ECTyN
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5. ASSEMBLING THE STIFFNESS MATRIX

The local stiffness matrix is determined by the coordinates of the vertices of the corresponding element
and is calculated in the function STIMA3.m and STIMA4.m.

For a triangular element T' let (21,31), (22,y2) and (23,ys) be the vertices and 5, 9 and n3 the corre-
sponding basis functions in S, i.e.

ni(ze, k) =8k, J,k=1,2,3.

A moments reflection reveals

1 x Y 1 oz Yj
(11) nj(x,y) = det 1 zj41 Y41 / det 1 zj41 Y41 .
L zjqs o L zjqs o

whence
Lo v — yige
V. — i+ j+2 )
(22 ) 2|T| ( Tiyz = Tjp
Here the indices are to be understood modulo 3, and |T'| is the area of T', i.e.,
2|7 = det < Faman s >
Y2—Y1 Ys— W
The resulting entry of the stiffness matrix is
|T| Ye+1 — Yk+2
M= Vn (VN de = ——— (yinq — v: Pito — L
ik /T i (V)" dx 2[T))2 (Yj+1 — Yjv2, Tjy2 — Tj41) This — Thil

with indices modulo 3. This is written simultaneously for all indices as
-1

|T| 1 1 1 0 0
M = 5 GGT with G:= |21 9 z3 11 0
Yi Y2 Y3 0 1

Since we obtain similar formulae for three dimensions, the following matlab routine works simultaneously
verbatim for d = 2 and d = 3.

function M = STIMA3(vertices)

d = size(vertices,2);

D_eta = [ones(1,d+1);vertices’] \ [zeros(1,d);eye(d)];

M = det([ones(1,d+1);vertices’]) * D_eta * D_eta’ / prod(1:d);

For a quadrilateral element T let (x1,y1),...,(%4,y4) denote the vertices with the corresponding hat
functions n1,...,n4. Since T is a parallelogram, there is an affine mapping

) =Gz =) ©+6)

= + ,

y 22—y ya—y) \C v

which maps [0,1]? onto 7. Then ¢;(z,y) = goj-(q);] (&,¢)) where shape functions

801(5;77) = (1_5)(1_77); 502(&:;77) :5(1_77)a
w3(€,n) =¢&n, ea(&,m) = (1=&)n.

From the substitution law it follows for the integrals of (9) that
M= [ Voila) - Voule. ) da.)
T
:/(0 l)szjofb#)(@(&,n)) (V(6k 0 @7")(@(¢,m))  |det D&, m)] (¢, n)

=det() [ | oy m(Da(E T Db (Tauteon)” de ).

)

Solving these integrals the local stiffness matrix for a quadrilateral element results in

3b4+2(a+c) —2a+c¢ —3b—(a+¢) a— 2c
M= det(A) —2a+c¢ —3b+2(a+c¢) a—2c 3b—(a+c)
-6 —-3b—(a+¢) a—2¢ 3b+2(a+c) —2a+c¢

a—2c 3b—(a+c) —2a+c¢ —3b+2(a+¢)
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function M = STIMA4(vertices)

D_Phi = [vertices(2,:)-vertices(1,:); vertices(4,:)-vertices(1,:)]’;
B = inv(D_Phi’#*D_Phi);

€1 = [2,-2;-2,21%B(1,1)+[3,0;0,-3]1%B(1,2)+[2,1;1,2]*B(2,2);

c2 = [-1,1;1,-11%B(1,1)+[-3,0;0,3]1%B(1,2)+[-1,-2;-2,-11%B(2,2);

M = det(D_Phi) * [C1 C2; C2 C1] / 6;

6. ASSEMBLING THE RIGHT-HAND SIDE

The volume forces are used for assembling the right hand side. Using the value of f in the centre of
gravity (zs,ys) of T' the integral fT fn; dz in (10) is approximated by
ro — I r3 — I

cdx &~ 1/ky det '
/Tf% # e 1/kr de <y2—y1 y3—y1>f(rs’y5‘)’

where kpr = 6 if 7" is a triangle and kr = 4 if T" is a parallelogram.

20 % Volume Forces
21 for j = 1:size(Elements3,1)
22 b(Elements3(j,:)) = b(Elements3(j,:)) + ...

23 det([1 1 1; Coordinates(Elements3(j,:),:)’]) * ...
24 f(sum(Coordinates(Elements3(j,:),:))/3)/6;

25 end

26 for j = 1:size(Elements4,1)

27 b(Elements4(j,:)) = b(Elements4(j,:)) + ...

28 det([1 1 1; Coordinates(Elements4(j,1:3),:)°]) *
29 f(sum(Coordinates(Elements4(j,:),:))/4)/4;

30 end

The values of f are given by the function f£.m which depends on the problem. The function is called with
the coordinates of points in Q and it returns the volume forces at these locations.

function VolumeForce = f(u);
VolumeForce = ones(size(u,1),1);

Likewise, the Neumann conditions contribute to the right hand side. The integral fE gn; ds in (10) is
approximated using the value of g in the centre (257, yp) of E with length |E|by

|E|
/ gn; ds ~ TQ(xM;yM) :
E

31 % Neumann conditions
32 if “isempty(Neumann)

33 for j = 1 : size(Neumann,1)

34 b(Neumann(j,:)) = b(Neumann(j,:)) + norm(Coordinates(Neumann(j,1),:)- ...
35 Coordinates(Neumann(j,2),:)) * g(sum(Coordinates(Neumann(j,:),:))/2)/2;
36 end

37 end

It is used here that in Matlab the size of an empty matrix is set equal to zero and that a loop of 1
through 0 is totally omitted. In that way, the question of the existence of Neumann boundary data is to be
renounced.

The values of g are given by the function g.m which again depends on the problem. The function is called
with the coordinates of points on T';y and returns the coresseponding stresses.

function Stress = g(u)
Stress = zeros(size(u,1),1);
7. INCOOPERATING DIRICHLET CONDITIONS

With a suitable numbering of the nodes the system of linear equations resulting from the construction
described in the previous section without incooperating Dirichlet conditions can be written as follows

A Ang U b
12 . o = o
(12) <A1T2 A22> <UD> (bD)’
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with U7 c TRM, (jD € RN-M  Here U are the values at the free nodes which are to be determined, (7D are
the values at the nodes which are on the Dirichlet boundary and thus are known a priori. Hence, the first
block of equations can be rewritten as
A11~U: —A12-UD.
In fact, this is the formulation of (6) with Up = 0 at non-Dirichlet nodes.
In the second block of equations in (12) the unknown is bp but since it is not of our interest it is omitted
in the following.

38 % Dirichlet conditions
39 u = sparse(size(Coordinates,1),1);
40 u(unique(Dirichlet)) = u_D(Coordinates(unique(Dirichlet),:));
41 b =Db - A * u;
The values up at the nodes on I'p are given by the function uD.m which depends on the problem. The
function is called with the coordinates of points in ' and returns the values at the corresponding locations.

function DirichletBoundaryValue = u_D(u)
DirichletBoundaryValue = zeros(size(u,1),1);

8. COMPUTATION AND DISPLAYING THE NUMERICAL SOLUTION

The rows of (7) corresponding to the rows of (12) form a reduced system of equations with a symmetric,
positive definite coefficient matrix Aj;. It is obtained from the original system of equations by taking the
rows and columns corresponding to the free nodes of the problem. The restriction can be achieved in Matlab
through proper indexing.

The system of equations is solved by the binary operator \ installed in Matlab which gives the left inverse
of a matrix.

43 u(FreeNodes)=A(FreeNodes,FreeNodes)\b(FreeNodes);

Matlab makes use of the properties of a symmetric, positive definit and sparse matrix for solving the
system of equations efficiently.
The graphical representation of the solution is given by the function SHOW.m.

function SHOW(Elements3,Elements4,Coordinates,u)

hold off
trisurf(Elements3,Coordinates(:,1),Coordinates(:,2),u’)
hold on
trisurf(Elements4,Coordinates(:,1),Coordinates(:,2),u’)
view(-67.5,30);

title(’Solution of the Problem’)

Here, the Matlab-routine trisurf (ELEMENTS,X,Y,U) is used to draw triangulations for equal types of
elements. Every row of the matrix ELEMENTS determines one polygon where the x-, y-, and z-coordinate of
each corner of this polygon is given by the corresponding entry in X, Y and U. The colour of the polygons is
given by values of U.

FIGURE 3. Solution for the Examples listed above
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9. THE HEAT EQUATION
For numerical simulations of the heat equation,
Ou/Ot = Au+ fin Q x [0,7T],

with an implicit Euler scheme in time, we split the time interval [0,7] into N equally size subintervals of
size dt = T'/N which leads to the equation

(13) (id —dt Ayup = dt fr + un_1

where f, = f(z,t,) and uy is the time discrete approximation of u at time ¢, = n dt. The weak form of (13)

is
/unvdz+dt/Vun-Vvda::dt </ fnvda:—}-/ g,ﬂ)da:) +/ Up_1vde
Q Q Q T'n Q

with g, = g(z,t,) and notation as in Section 2. For each time step, this equation is solved using finite
elements which leads to the linear system

(dt A+ B)U, =b+ BU,_1 .

The stiffness matrix A and right-hand side b are as before (see (8)). The mass matrix B results from the
terms fn ujvde, ie.

Bk = Z /Tnjnk dx.

TeT

For piecewise affine elements we obtain

1 To— Ty T3—T 2 1

/njnkdm:—det< 2 v 1) 1 21

T 24 Yao—U1 Ys— N 11 2
Appendix B shows the modified code for the heat equation. The numerical example was again based on
the domain in Fig. 1, this time with f = 0 and up = 1 on the outer boundary. The value on the (inner)

circle is still up = 0. Fig. 4 displays the solution the given code produced for four different times ¢ = 0.1,
0.2,0.5 and ¢t = 1.

FIGURE 4. Solution for the heat equation
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10. A NON-LINEAR PROBLEM

As a simple application to non-convex variational problems, we consider the Ginzburg-Landau equation
(14) eAu=u®—u in £, u=20 on I’
for ¢ = 1/100. Its weak formulation, i.e.

(15) F(u,v) ::/ﬂeVu~Vvdx—/ﬂ(u—u3)vdaf::0 (v € Hy(Q)),

can also be regarded as the necessary condition for the minimizer in the variational problem

(16) min / I:%|Vu|2 + %(u2 - 1)2] dz!
Q

We aim to solve (15) with Newton-Raphson’s method. Starting with some u°, in each iteration step we
compute u” — u"t! € H}(Q) satisfying

(17) DF(u® vsum — a1y = F(um,0) (v € HL(Q)),

where

(18) DF(u,v;w):/EVU-dew—/(vw—?)vuZw) dz.
Q Q

The integrals in F(U,V) and DF(U,V;W) can be calculated analytically and the actual Matlab code
again only needs little modifications, shown in Appendix C. Essentially, one has to initialize the code (with
a random start vector that fullfills the Dirichlet boundary condition (lines 7 and 8)), to add a loop (lines
9 and 48), to update the new Newton approximation (line 44), and to supply a stopping criteria in case of
convergence (lines 45—47). Lines 20-24 represent (15) in the discrete space.

It is known that the solutions are not unique. Indeed, for any local minimizer u, —u is also a minimizer
and 0 solves the problem as well. The constant function u = %1 leads to zero energy, but violates the
continuity or the boundary conditions. Hence, boundary or internal layers are observed which seperate large
regions where u is almost constant +1.

In the finite dimensional problem, different initial values u” may lead to different numerical approxima-
tions. Fig. 5 displays two possible solutions found for two different starting values after about 20-30 iteration
steps.

0

AV,

By

RN / 8
.\\\\\\\\\‘«vy“mmw " Ny

1\ ANV i Y -
:: \%{q&m&% ‘ , . AN ‘1%;%;/‘(‘“""“% .

FIGURE 5. Solutions for the non-linear equation

11. THREE-DIMENSIONAL PROBLEMS

With a few modifications the matlab code for linear two-dimensional problems discussed in Sections 5-8
can be extented to three-dimensional problems. Tetraeder are used as finite elements. The basis functions
are defined corresponding to two dimensions, e.g., for a tetraeder element 7' let (z;,y;,2;) (j =1,...,4) be
the vertices and 7; the corresponding basis functions, i.e.

ni(2k, K, k) = 65 Gk=1,...,4.

Each of the *.dat files get an additional entry per row. In Coordinates.dat it is the z-component of each
node P; = (x;,y;,z;). A typical entry in Coordinates.dat reads now

j  k £ m n.
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where k, £, m, n are the numbers of vertices Py, ..., P, of the j** element. The sequence of nodes is organized
such that the right-hand side of

T 1 1 1

Tk Ty Tm Tp

Y Y¢ Ym Yn

2k 2 Zm Zn

6|7 = det

is positive. The numbering of surface elements defined in Neumann.dat and Dirichlet.dat is done with
mathematical positive orientation viewing from outside £ onto the surface.
Using the matlab code in Appendix A, cancelation of lines 5 and 16-19 and substituting 22-24, 34-35,

45 by the following lines gives a short and flexibel tool for solving scalar, linear three-dimensional problems.
22% b(Elements3(j,:)) = b(Elements3(j,:)) + ...

* det([1,1,1,1;Coordinates(Elements3(j,:),:)’]) *
24 % f(sum(Coordinates(Elements3(j,:),:))/4) / 24;

34% Db(Neumann(j,:)) = b(Neumann(j,:)) + ...

* norm(cross(Coordinates(Neumann(j,3),:)-Coordinates(Neumann(j,1),:),
* Coordinates(Neumann(j,2),:)-Coordinates(Neumann(j,1),:))) ...
35% * g(sum(Koordinates(Neumann(j,:),:))/3)/6;

45% ShowSurface([Dirichlet;Neumann],Coordinates,full(u));
The graphical representation for three-dimensional problems can be done by a shortened version of SHOW
in Section 8
function ShowSurface(Surface,Coordinates,u)

trisurf(Surface,Coordinates(:,1),Coordinates(:,2),Coordinates(:,3),u’)
view(130,90)

FIGURE 6. Temperature distribution of a piston

The temperature distribution of a simplified piston is presented in Fig. 6. Calculation of the temperature
distribution with 3728 nodes and 15111 elements (including the graphical output) takes a few minutes on a
workstation.

ApPPENDIX A. THE COMPLETE MATLAB CODE

1 % 2_D-FEM for Laplace-operator

2 % Initialisation

3 load Coordinates.dat; Coordinates(:,1)=[];

4 load Elements3.dat; Elements3(:,1)=[];

5 load Elements4.dat; Elements4(:,1)=[];

6 eval(’load Neumann.dat; Neumann(:,1) = [];’, ’Neumann=[];’);
7 load Dirichlet.dat; Dirichlet(:,1) = []1;

8 FreeNodes=setdiff(1l:size(Coordinates,1),unique(Dirichlet));
9 A = sparse(size(Coordinates,1),size(Coordinates,1));
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b = sparse(size(Coordinates,1),1);
% Assembly
for j = 1:size(Elements3,1)
A(Elements3(j,:),Elements3(j,:)) = A(Elements3(j,:),Elements3(j,:))
+ STIMA3(Coordinates(Elements3(j,:),:));
end
for j = 1:size(Elements4,1)
A(Elements4(j,:),Elements4(j,:)) = A(Elements4(j,:),Elements4(j,:))
+ STIMA4(Coordinates(Elements4(j,:),:));
end
% Volume Forces
for j = 1:size(Elements3,1)
b(Elements3(j,:)) = b(Elements3(j,:)) + ...
det([1,1,1; Coordinates(Elements3(j,:),:)’]) *
f(sum(Coordinates(Elements3(j,:),:))/3)/6;
end
for j = 1:size(Elements4,1)
b(Elements4(j,:)) = b(Elements4(j,:)) + ...
det([1,1,1; Coordinates(Elements4(j,1:3),:)°]) *
f(sum(Coordinates(Elements4(j,:),:))/4)/4;
end
% Neumann conditions
if “isempty(Neumann)
for j =1 : size(Neumann,1)
b(Neumann(j,:))=b(Neumann(j,:)) + norm(Coordinates(Neumann(j,1),:)- ...
Coordinates(Neumann(j,2),:)) * g(sum(Coordinates(Neumann(j,:),:))/2)/2;
end
end
% Dirichlet conditions
u = sparse(size(Coordinates,1),1);
u(unique(Dirichlet)) = u_0(Coordinates(unique(Dirichlet),:));
b=b -4 % u;
% Computation of the solution
u(FreeNodes) = A(FreeNodes,FreeNodes) \ b(FreeNodes);
% graphic representation
SHOW(Elements3,Elements4,Coordinates,full(u));

APPENDIX B. MATLAB CODE FOR THE HEAT EQUATION

% 2_D-FEM for Heat-Equation
% Initialisation
load Coordinates.dat; Coordinates(:,1)=[];
load Elements3.dat; Elements3(:,1)=[];
eval(’load Neumann.dat; Neumann(:,1) = [];’,’Neumann=[];’);
load Dirichlet.dat; Dirichlet(:,1) = [];
FreeNodes=setdiff(1:size(Coordinates,1),unique(Dirichlet));
A = sparse(size(Coordinates,1),size(Coordinates,1));
sparse(size(Coordinates,1),size(Coordinates,1));
1; dt = 0.01; N = T/dt;
zeros(size(Coordinates, 1) ,N+1);
% Assembly
for j = 1:size(Elements3,1)
A(Elements3(j,:),Elements3(j,:)) = A(Elements3(j,:),Elements3(j,:))
+ STIMA3(Coordinates(Elements3(j,:),:));
end
for j = 1:size(Elements3,1)
B(Elements3(j,:),Elements3(j,:)) = B(Elements3(j,:),Elements3(j,:)) ...
+ det([1,1,1;Coordinates(Elements3(j,:),:)’]1)*[2,1,1,;1,2,1;1,1,2]/24;
end

B
T
1))
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24 Y% Initial Condition

25 U(:,1) = zeros(size(Coordinates,1),1);
26 % time steps

27 for n = 2:N+1

28 b = sparse(size(Coordinates,1),1);
29 % Volume Forces

30 for j = 1:size(Elements3,1)

31 b(Elements3(j,:)) = b(Elements3(j,:)) + ...

32 det([1,1,1; Coordinates(Elements3(j,:),:)’]) *

33 dt*f (sum(Coordinates(Elements3(j,:),:))/3,n*dt)/6;
34 end

35 % Neumann conditions

36 if ~isempty(Neumann)

37 for j = 1 : size(Neumann,1)

38 b(Neumann(j,:)) = b(Neumann(j,:)) + ...

39 norm(Coordinates(Neumann(j, 1), :)-Coordinates(Neumann(j,2),:))* ...
40 dt*g(sum(Coordinates(Neumann(j,:),:))/2,n*dt)/2;
41 end

42 end

43 Y, previous timestep

44 b=b+ B * U(:,n-1);

45 % Dirichlet conditions

46 u = sparse(size(Coordinates,1),1);

47 u(unique(Dirichlet)) = u_D(Coordinates(unique(Dirichlet),:),n*dt);
48 b=b- (dt * A + B) * u;

49 Y Computation of the solution

50 u(FreeNodes) = (dt*A(FreeNodes,FreeNodes)+ ...

51 B(FreeNodes,FreeNodes))\b(FreeNodes);
52 U(:,n) = u;
53 end

54 Y, graphic representation
55 SHOW(Elements3,[],Coordinates,full(U(:,N+1)));

AppPENDIX C. MATLAB CODE FOR THE NON-LINEAR PROBLEM

1 % Initialisation

2 load Coordinates.dat; Coordinates(:,1)=[];

3 load Elements3.dat; Elements3(:,1)=[];

4 eval(’load Neumann.dat; Neumann(:,1) = []1;’,’Neumann=[];’);

5 load Dirichlet.dat; Dirichlet(:,1) = [];

6 FreeNodes=setdiff(1l:size(Coordinates,1),unique(Dirichlet));

7 U = rand(size(Coordinates,1),1);

8 U(unique(Dirichlet)) = u_D(Coordinates(unique(Dirichlet),:));
9

for i=1:50
12 % Assembly of DF(u"n)
13 A = sparse(size(Coordinates,1),size(Coordinates,1));
15 for j = 1:size(Elements3,1)
16 A(Elements3(j,:),Elements3(j,:)) = A(Elements3(j,:),Elements3(j,:))
17 + localDF(Coordinates(Elements3(j,:),:),U(Elements3(j,:)));
18 end
19 % Assembly of F(U"n)
20 b = sparse(size(Coordinates,1),1);
21 for j = 1:size(Elements3,1)
22 b(Elements3(j,:)) = b(Elements3(j,:)) ...

23 + localF(Coordinates(Elements3(j,:),:),U(Elements3(j,:)));
24 end

25 % Volume Forces

26 for j = 1:size(Elements3,1)

27 b(Elements3(j,:)) = b(Elements3(j,:)) - ...
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28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

JOCHEN ALBERTY, CARSTEN CARSTENSEN, STEFAN A. FUNKEN

det([1 1 1; Coordinates(Elements3(j,:),:)’]) *
f(sum(Coordinates(Elements3(j,:),:))/3)/6;
end
% Neumann conditions
if “isempty(Neumann)
for j = 1 : size(Neumann,1)
b(Neumann(j,:))=b(Neumann(j,:)) - norm(Coordinates(Neumann(j,1),:)- ...
Coordinates(Neumann(j,2),:))*g(sum(Coordinates(Neumann(j,:),:))/2)/2;
end
end
% Dirichlet conditions
V = zeros(size(Coordinates,1),1);
V(unique(Dirichlet)) = 0;

% Solving one Newton step
V(FreeNodes) = A(FreeNodes,FreeNodes)\b(FreeNodes);
U=U-v;
if norm(V) < 10~(-10)

break

end

end

% graphic representation
SHOW(Elements3, [],Coordinates,full(U));

function b = localF(vertices,U)

Eps = 1/100;

D_eta = [ones(1,3);vertices’] \ [zeros(1,2);eye(2)];

Area = det([ones(1,3);vertices’]) / 2;

b=Area*((Eps*D_eta*D_eta’-[2,1,1;1,2,1;1,1,2]/12)*U+ ...
[4*xU(1) "3+ U(2)"3+U(3)"3+3xU(1) ~2%(U(2)+U(3))+2%U(1) ...
*(U(2)"2+4U0(3) "2)+U(2)*U(3)* (U(2)+U(3))+2*U(1)*U(2)*U(3);
4xU(2) "3+ U(1)"34U(3)"3+3*%xU(2) "2« (U(1)+U(3))+24U(2) ...
*(U(1)"2+4U0(3) "2)+U(1)*U(3)* (U(1)+U(3))+2*U(1) *U(2)*U(3);
4*U(3) "3+ U(2)"3+U(1) ~3+3*xU(3) " 2x(U(2)+U(1))+2*U(3) ...
*(U(2)72+U(1) ~2)+U(2)*U(1)*(U(2)+U(1))+2*U(1)*U(2)*U(3)]1/60);

function M = localDF(vertices,U)

Eps = 1/100;

D_eta = [ones(1,3);vertices’] \ [zeros(1,2);eye(2)];

Area = det([ones(1,3);vertices’]) / 2;

M = Area*x(Eps*D_eta*D_eta’-[2,1,1;1,2,1;1,1,2]/12 + ...
[12+U (1) ~2+2% (U(2) ~2+U(3) ~"2+U(2) *U(3) )+6*xU (1) *(U(2)+U(3)), ...
3% (U(1)"2+U(2) "2)+U(3) ~2+4*U(1)*U(2)+2+U(3)*(U(1)+U(2)), ...
3% (U(1)~2+U(3) "2)+U(2) "2+4*U(1) *¥U(3)+24U(2) *(U(1)+U(3));
3% (U(1)"2+U(2) "2)+U(3) ~2+4*U(1)*U(2)+2+U(3)*(U(1)+U(2)), ...
12%U(2) “2+2% (U(1) “2+U(3) ~2+U(1)*U(3) )+6*U(2) *(U(1)+U(3)), ...
3% (U(2)"24U(3) "2)+U(1) "2+4*U(2)*U(3)+2*xU(1)*(U(2)+U(3));
3% (U(1)"24U(3) "2)+U(2) "2+4*U(1)*U(3)+2*xU(2)*(U(1)+U(3)), ...
3% (U(2)"24U(3) "2)+U(1) "2+4*xU(2) *U(3)+2*xU(1)*(U(2)+U(3)),...
124U (3) "2+2% (U(1) “2+U(2) “2+U (1) *U(2) )+6*U(3) * (U(1)+U(2))1/60);
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