Appendix 1:
The calculation of integrals using Cauchy’s formula

Lit.: S. Fliigge, Mathematische Methoden der Physik I, Springer-
Verlag, Heidelberg, 1979, S. 1ff.

The basis of all following statements is Cauchy’s formula
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f is a complex function of the complex argument z, and the
integration is performed on the closed loop C (in anti-clockwise
direction):
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The above simple form of Cauchy’s formula is only valid
if the function f has no sigularities within C and on the
boundary of C.

What happens if f(z) does have such a singularity
(a pole of n'™ order) within C?
In this case, the integrand can be written as

(n=1,2,...)

where F'(z) means an analytical function.

A possibility to attack the problem is to deform the closed path
C according to the following diagram:
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C' is now a sum of four elements:
C=C'"+A+ K+ A,

Obviously, the contributions to the path integral along A and
A’ cancel, and one gets (note the contrary directions of C’ and
K)
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Defining polar coordinates for the circle K with center at 2z, and
radius r, namely

z = 29+ re'? and dz = ire' dy,
one obtains
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Due to the regularity of F'(z) at z = zj, this function can be
Taylor-expanded as
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A combination of the last three equations leads to
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We call this Cauchy’s formula or Cauchy’s residua statement,

because
F(n—l) (ZO)

(n—1)!
means the residuum of the function f(2) for the pole of n'* order
at zp.
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According to the last diagram, Eq. (1) can be generalized as
follows: the integral of f(z) with respect to a closed loop C' on
the z plane (direction = anti-clockwise) is given by

Y{Cdz f(z) =2mi Y Resf(zj), (2)
' J
what means that the integral is only determined by the sum of

the residua at the poles at z1, 29, ....:
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In Solid State Physics, formula (2) is frequently used for the
evaluation of integrals like
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where wy means a real number, i.e., the singularity lies on the
real w axis.

In such a situation, the best way to choose an integration path
on the complex w plane is one of the following ones:
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The integration from w = —o0 to +00 can be realized by drawing
a semicircle of radius R either on the upper or the lower half
plane (UHP or LHP), including the limit R — oco. By doing so,
one gets in case of an integration over the UHP!
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and over the LHP
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One further obtains
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or
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Now, what’s about the semicircle integrals concerning the
function to be integrated?

'UHC means "upper half-circle”, LHC means ”lower half-circle”.
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By using the transformation w = Re'?, one gets for the integral
over the UHC
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What concerns the limits of these integrals for R — oo, one
yields for an integration over the upper (lower) half-plane
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The consequences of this behavior are as follows:
e In case of a pole of first order (n=1):

— For ¢ > 0 : the integral over the half circle is zero (c0)
if the integration is performed over the UHP (LHP):
For t > 0, the integration has to be done over the UHP.

— For t < 0 : the integral over the half circle is zero (c0)
if the integration is performed over the LHP (UHP):
For t < 0, the integration has to be done over the LHP.

This rule called Jordan’s lemma is of great importance for
practical calculations.

e In case of a pole of higher order (n > 1):
In that case, the integral goes to zero for any ¢, without
taking into account over which half plane the integration is
performed.

If the above rules are obeyed, all "half-plane integrals”
disappear and one gets for £ > 0
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A last problem is still open: it is technically disadvantageous if
the singularity lies exactly on the real w axis. For this reason,

this pole is shifted into the UHP (LHP) by the factor +(-) in
(with 1 as a real positive number << 1):
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After the integration, the limit 7 — 0 has to be performed:

50 F wt
I(t) = lim " (we —.
1n—0J/—00 (W —wy Fin)"

Finally, the application of Cauchy’s formula is demonstrated in
connection to the integral representation of the Heaviside step
function (see Sec. 1.2.1 on the non-interacting Green’s function):
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Obviously, the singularity lies at w = —7, i.e., within the LHP.
For this pole is of first order, Jordan’s Lemma has to be obeyed.

e Evaluation of the integral for 7 > 0: the integration has
to be performed over the LHP, and the residuum of the

integrand _
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Consequently, the integral has the value O(7 > 0) = 1.



e Evaluation of the integral for 7 < 0: the integration has to
be performed over the UHP, and in this region,there is no
singularity at all. Consequently, the integral has the value

O(r <0)=0.



