
Appendix 1:

The calculation of integrals using Cauchy’s formula

Lit.: S. Flügge, Mathematische Methoden der Physik I, Springer-
Verlag, Heidelberg, 1979, S. 1ff.

The basis of all following statements is Cauchy’s formula
∮

C
dz f(z) = 0 . (1)

f is a complex function of the complex argument z, and the
integration is performed on the closed loop C (in anti-clockwise
direction):

The above simple form of Cauchy’s formula is only valid
if the function f has no sigularities within C and on the
boundary of C.

What happens if f(z) does have such a singularity
(a pole of nth order) within C?
In this case, the integrand can be written as

f(z) =
F (z)

(z − z0)n
(n = 1, 2, . . .)

where F (z) means an analytical function.

A possibility to attack the problem is to deform the closed path
C according to the following diagram:
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C is now a sum of four elements:

C = C ′ + A + K + A′ .

Obviously, the contributions to the path integral along A and
A′ cancel, and one gets (note the contrary directions of C ′ and
K)

∫

C ′

dz
F (z)

(z − z0)n
= −

∫

K
dz

F (z)

(z − z0)n
.

Defining polar coordinates for the circle K with center at z0 and
radius r, namely

z = z0 + reiϕ and dz = ireiϕ dϕ ,

one obtains
∫

K
dz

F (z)

(z − z0)n
= −ir

∫ 2π

ϕ=0
dϕ eiϕ F (z)

rneinϕ
.

Due to the regularity of F (z) at z = z0, this function can be
Taylor-expanded as

F (z) =
∞∑

k=0

F (k)(z0)

k!
(z − z0)

k =
∞∑

k=0

F (k)(z0)

k!
rk eikϕ .

A combination of the last three equations leads to

∫

C ′

dz
F (z)

(z − z0)n
= i

∞∑

k=0

F (k)(z0)

k!
rk−n+1

∫ 2π

0
dϕ ei(k−n+1)ϕ

︸ ︷︷ ︸

=2π δk,n−1

= 2πi
F (n−1)(z0)

(n − 1)!
.
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We call this Cauchy’s formula or Cauchy’s residua statement,
because

Resf(z0) ≡
F (n−1)(z0)

(n − 1)!

means the residuum of the function f(z) for the pole of nth order
at z0.

According to the last diagram, Eq. (1) can be generalized as
follows: the integral of f(z) with respect to a closed loop C on
the z plane (direction = anti-clockwise) is given by

∮

C
dz f(z) = 2πi

∑

j

Resf(zj) , (2)

what means that the integral is only determined by the sum of
the residua at the poles at z1, z2, ....:

In Solid State Physics, formula (2) is frequently used for the
evaluation of integrals like

I(t) =
∫ +∞

−∞
dω

F (ω) eiωt

(ω − ω0)n
n = 1, 2, . . .

where ω0 means a real number, i.e., the singularity lies on the
real ω axis.

In such a situation, the best way to choose an integration path
on the complex ω plane is one of the following ones:
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The integration from ω = −∞ to +∞ can be realized by drawing
a semicircle of radius R either on the upper or the lower half
plane (UHP or LHP), including the limit R → ∞. By doing so,
one gets in case of an integration over the UHP1

∫

C
dω f(ω) =

∫ +∞

−∞
dω f(ω) +

∫

UHC
dω f(ω) = 2πi Resf(ω0)

and over the LHP
∫

C
dω f(ω) = −

∫ +∞

−∞
dω f(ω) +

∫

LHC
dω f(ω) = 2πi Resf(ω0) .

One further obtains
∫ +∞

−∞
dω f(ω) = −

∫

UHC
dω f(ω) + 2πi Resf(ω0)

or ∫ +∞

−∞
dω f(ω) =

∫

LHC
dω f(ω) − 2πi Resf(ω0) .

Now, what’s about the semicircle integrals concerning the
function to be integrated?

f(ω) =
F (ω) eiωt

(ω − ω0)n

1UHC means ”upper half-circle”, LHC means ”lower half-circle”.
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By using the transformation ω = R eiϕ, one gets for the integral
over the UHC

iR
∫ π

0
dϕ

F (Reiϕ)

(Reiϕ − ω0)n
eitR cos ϕ e−tR sin ϕ

or for the integral over the LHC

iR
∫ π

0
dϕ

F (−Reiϕ)

(−Reiϕ − ω0)n
e−itR cos ϕ e+tR sin ϕ .

What concerns the limits of these integrals for R → ∞, one
yields for an integration over the upper (lower) half-plane

lim
R→∞

∫ π

0
dϕ . . .

e−tR sin ϕ

Rn−1
or lim

R→∞

∫ π

0
dϕ . . .

e+tR sin ϕ

Rn−1

The consequences of this behavior are as follows:

• In case of a pole of first order (n=1):

– For t > 0 : the integral over the half circle is zero (∞)
if the integration is performed over the UHP (LHP):
For t > 0, the integration has to be done over the UHP.

– For t < 0 : the integral over the half circle is zero (∞)
if the integration is performed over the LHP (UHP):
For t < 0, the integration has to be done over the LHP.

This rule called Jordan’s lemma is of great importance for
practical calculations.

• In case of a pole of higher order (n > 1):
In that case, the integral goes to zero for any t, without
taking into account over which half plane the integration is
performed.

If the above rules are obeyed, all ”half-plane integrals”
disappear and one gets for t > 0

∫ +∞

−∞
dω

F (ω)eiωt

(ω − ω0)n
= +2πiRes




F (ω)eiωt

(ω − ω0)n



 (ω0)

and for t < 0

∫ +∞

−∞
dω

F (ω)eiωt

(ω − ω0)n
= −2πiRes




F (ω)eiωt

(ω − ω0)n



 (ω0)

5



A last problem is still open: it is technically disadvantageous if
the singularity lies exactly on the real ω axis. For this reason,
this pole is shifted into the UHP (LHP) by the factor +(-) iη

(with η as a real positive number << 1):

After the integration, the limit η → 0 has to be performed:

I(t) = lim
η→0

∫ +∞

−∞
dω

F (ω) eiωt

(ω − ω0 ∓ iη)n
.

Finally, the application of Cauchy’s formula is demonstrated in
connection to the integral representation of the Heaviside step
function (see Sec. 1.2.1 on the non-interacting Green’s function):

Θ(τ ) = −

∫ +∞

−∞

dω

2πi

e−iωτ

ω + iη
.

Obviously, the singularity lies at ω = −iη, i.e., within the LHP.
For this pole is of first order, Jordan’s Lemma has to be obeyed.

• Evaluation of the integral for τ > 0: the integration has
to be performed over the LHP, and the residuum of the
integrand

f(ω) = −
1

2πi

e−iωτ

ω + iη

reads

lim
η→0

[

−
1

2πi
e−ητ

]

= −
1

2πi
.

Consequently, the integral has the value Θ(τ > 0) = 1.
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• Evaluation of the integral for τ < 0: the integration has to
be performed over the UHP, and in this region,there is no
singularity at all. Consequently, the integral has the value
Θ(τ < 0) = 0.
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