
Summary Secs. 2.1-2.3:

Structure factors and such things ...

2.1 The interaction operator - revisited

Starting point:

The two-particle interaction operator V̂ in the occupation num-
ber representation
(”second quantization”):

V̂ II =
1

2

∑

αβ

∫ ∫

d3rd3r′V (r− r′)ψ̂†α(r)ψ̂†β(r
′)ψ̂β(r

′)ψ̂α(r) . (1)

The electron density operator in the first and second
quantization:

ρ̂I(r) =
N∑

i=1

δ(r− ri) , (2)

ρ̂II(r) =
∑

α

∫

d3r′ψ̂†α(r′)δ(r− r′)ψ̂α(r′) =
∑

α
ψ̂†α(r)ψ̂α(r) . (3)

With

∑

αβ

ψ̂†α(r)ψ̂†β(r
′)ψ̂β(r

′)ψ̂α(r) =
∑

αβ

ψ̂†α(r)ψ̂α(r)ψ̂†β(r
′)ψ̂β(r′)−

∑

α
ψ̂†α(r)ψ̂α(r)δ(r−r′)

one gets

V̂ II =
1

2

∫

d3rd3r′V (r− r′) [ρ̂(r)ρ̂(r′)− δ(r− r′)ρ̂(r)] .

The contribution of the potential energy to the ground state
energy of the multi-electron system,

Epot =< Ψ0|V̂ |Ψ0 > ,

reads as

Epot =
1

2

∫ ∫

d3rd3r′V (r−r′) [< Ψ0|ρ̂(r)ρ̂(r
′)|Ψ0 > −δ(r− r′) < Ψ0|ρ̂(r)|Ψ0 >]

(4)
where Φ0 is the wavefunction of the full-interacting electron gas.
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The next statement is valid for all homogeneous systems,
no matter how complicated Ψ0 may be:

< Ψ0|ρ̂(r)|Ψ0 >= n0 =
N

Ω
.

Definition of the density deviation operator

ρ̆(r) ≡ ρ̂(r)− n0 what means that < Ψ0|ρ̆(r)|Ψ0 >= 0 .
(5)

Eqs. (4) and (5) yield

Epot =
1

2

∫ ∫

d3rd3r′V (r−r′)
[

< Ψ0|ρ̆(r)ρ̆(r
′)|Ψ0 > +n2

0 − n0δ(r− r′)
]

.

(6)

A further definition:
the time-ordered density-density correlation function:

< Ψ0|T̂ [ρ̆H(x)ρ̆H(x′)] |Ψ0 > (7)

with x ≡ rt and x′ ≡ r′t′.

As demonstrated in Appendix 4 of this lecture, this function
equals - apart of the simple factor ih̄ - the previously described
polarization function Π:

< Ψ0|T̂ [ρ̆H(x)ρ̆H(x′)] |Ψ0 >≡ ih̄Π(x, x′) . (8)

For t > t′, this expression reads

< Ψ0|ρ̆H(r, t)ρ̆H(r′, t′)|Ψ0 >= ih̄Π(rt, r′t′) .

The left side of the above equation can be written as

< Ψ0|e
iĤt/h̄ρ̆(r)e−iĤ(t−t′)/h̄ρ̆(r′)e−iĤt′/h̄|Ψ0 >

and further

e−iÊ0(t−t′)/h̄ < Ψ0|ρ̆(r)e
−iĤ(t−t′)/h̄ρ̆(r′)|Ψ0 > .

For the limit (t− t′)→ 0+, one finally gets

< Ψ0|ρ̆(r)ρ̆(r
′)|Ψ0 >= ih̄ lim

(t−t′)→0+
Π(rt, r′t′) . (9)
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Combining Eqs. (6) and (9), the potential energy of the electron
ground state can be written as

Epot =
1

2
lim

(t−t′)→0+

∫ ∫

d3rd3r′ V (r−r′)
[

ih̄Π (rt; r′t′) + n2
0 − n0δ(r− r′)

]

.

A Fourier transform from (rt) to (kω) has the result

Epot =
1

2
lim
η→0

∫ ∫

d3rd3r′
1

Ω

∑

k

eik(r−r′)V (k)

×



ih̄
1

2πΩ

∑

q
eiq·(r−r′)

∫

dω e−iωη Π (q, ω) + n2
0 − n0δ(r− r′)



 .

Evaluating the integrals over r and r′ (see page 69 of the german
lecture notes) leads to the formula

Epot =
n2

0V (0)Ω

2
+
∑

q

[

ih̄

4π

∫ +∞

−∞
dω e−iωη V (q)Π(q, ω)−

n0

2
V (q)

]

.

(10)

• The first term of Eq. (10) containing V (0) can be inter-
preted as the Hartree contribution. As already discussed
at the beginning of this lecture, for homogeneous electron
gases, this contribution to the energy exactly cancels with
the energy due to interactions of the electrons with the
(jellium-like smeared) ion lattice of the solid.
Mathematically, this fact is expressed by V (0) = 0.

• Here it has to be emphasized that the Fourier coefficients
Π(q, ω) in Eq. (10) mean the complete polarisation func-
tion, including all repetitions.

Remember the general relation between the total and the
proper (irreducible) polarisation functions Π(q, ω) and Πpr(q, ω):

Πtotal ·V = Πpr ·V +(Πpr ·V )2 + · · · =
1

1− ΠprV
−1 =

1

κ
−1

or, more precisely,

Πtotal(q, ω)V (q) =
1

κ(q, ω)
− 1 . (11)
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Inserting Eq. (11) into Eq. (10) with V (q) = 4πe2/q2 and
V (0) = 0 results to

Epot = −
∑

q




2πn0e

2

q2
−
ih̄

4π

∫ +∞

−∞
dω e−iωη




1

κ(q, ω)
− 1







 .

Now, as we often do during this lecture, the ”important” relation




1

κ(q, ω)





T

= 1+
1

π

∫ ∞

0
dσℑ




1

κ(q, σ)





T {

1

σ − ω − iη
+

1

σ + ω − iη

}

(12)
is used:

+
ih̄

4π2

∫ ∞

0
dσℑ




1

κ(q, σ)





∫

dω e−iωη
{

1

ω − σ + iη
−

1

ω + σ − iη

}

︸ ︷︷ ︸

=−2πi

,

and further

Epot = −
∑

q




2πn0e

2

q2
+

h̄

2π

∫ ∞

0
dσℑ




1

κ(q, σ)







 . (13)
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2.2 The Pauli-Hellmann-Feynman Theorem

In this section, we deal with the calculation of the energy E0 of
the ground state of a full-interacting homogeneous electron gas:

E0 =< Ψ0|T̂ + V̂ |Ψ0 > , (14)

where the second term describes the expectation value of the in-
teraction operator containing the Coulomb interaction between
the electrons:

V̂ ←
e2

|r− r′|
.

W. Pauli and other authors proposed to take the ”e2” not
simply as a physical constant, but as coupling constant λ
of the interaction:

• λ = 0 → no interaction

• λ = e2 → full interaction

By doing so, one gets a variable interaction operator that is
linearly dependent on λ:

V̂ (λ) = λ · V̂0 , (15)

and Eq. (14) changes to

E0(λ) =< Ψ0(λ)|T̂ + λV̂0|Ψ0(λ) > .

Derivating this expression with respect to λ leads to

∂E0(λ)

∂λ
= < Ψ0(λ)|V̂0|Ψ0(λ) > +

+ <
∂Ψ0(λ)

∂λ
|Ĥ|Ψ0(λ) > + < Ψ0(λ)|Ĥ|

∂Ψ0(λ)

∂λ
>

= < Ψ0(λ)|V̂0|Ψ0(λ) > +E0(λ)
∂

∂λ
< Ψ0(λ)|Ψ0(λ) >

︸ ︷︷ ︸

=0

.

Using Eq.(15), one further gets

∂E0(λ)

∂λ
=

1

λ
< Ψ0(λ)|V̂ (λ)|Ψ0(λ) > , (16)

5



and an integration of this expression with respect to λ yields

∫ e2

λ=0
dλ

∂E0(λ)

∂λ
= E0(λ = e2)− E0(λ = 0) = E0 − Ẽ0 ,

the difference between the ground state energies of the
interacting (E0) and the non-interacting particle system (Ẽ0).

Using Eqs. (16) and (13), one gets

E0 = Ẽ0 +
∫ e2

λ=0

dλ

λ
< Ψ0(λ)|Ŵ (λ)|Ψ0(λ) >

and

E0 = 2
∑

|k|≤kF

h̄2k2

2m
−
∑

q

∫ e2

λ=0

dλ

λ




2πn0λ

q2
+

h̄

2π

∫ ∞

0
dσℑ




1

κλ(q, σ)







 .

(17)

This is a formula of extraordinary importance, because

it enables the calculation of the ground state energy

of the interacting electron gas only on the basis of its

dielectric function.
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2.3 Structure factors and pair correlation

The so-called dynamical structure factor S(q, ω) of an interact-
ing electron gas is easily obtained by a trivial new-formulation
of Eq. (17):

E0 = 2
∑

|k|≤kF

h̄2k2

2m
+

+ 2πn0

∑

q

1

q2

∫ e2

0
dλ











−1 +
1

2π

∫ ∞

0
dσ



−
h̄q2

2πλn0



 ℑ




1

κλ(q, σ)





︸ ︷︷ ︸

Sλ(q,σ)











with

Sλ=e2(q, ω) ≡ S(q, ω) = −
h̄q2

2πe2n0
ℑ




1

κ(q, ω)



 . (18)

The eminent importance of this real quantity comes from its
relations to scattering experiments:

• The dynamical structure factor is strongly correlated to
the probability P (q, ω) for an incoming particle to undergo
a ”change of momentum” (h̄q) and a ”change of energy”
(h̄ω), caused by its interaction by the electronic system:

P (q, ω) =
n0

Ω




v(q)

Ω





2

S(q, ω) ,

where v(q) means the Fourier transform of the interaction
potential between the incoming particle and the electrons.

• For T = 0 K, the system can only absorb energy from the
test particle; therefore, one has the relation

S(q, ω) = 0 für ω < 0 .

• Based on Eq. (18), the dynamical structure factor S(q, ω)
enables an experimental control of theoretically obtained
dielectric functions κ(q, ω) by inelastic scattering experi-
ments as electron energy loss spectroscopy EELS or
inelastic x-ray scattering spectroscopy IXSS etc.
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Of course, starting from S(q, ω), one can define the
static structure factor

Sλ=e2(q) ≡
1

2π

∫ ∞

0
dω S(q, ω) = −

h̄q2

4π2e2n0

∫ ∞

0
dωℑ




1

κ(q, ω)



 ,

(19)
leading to the following relation to the ground-state energy:

E0 = 2
∑

|k|<kF

h̄2k2

2m
+ 2πn0

∑

q

1

q2

∫ e2

λ=0
dλ [Sλ(q)− 1] . (20)

A relation between this static structure factor and the expecta-
tion value of the density-density correlation operator:

Remember Eq. (9):

< Ψ0|ρ̆(r)ρ̆(r
′)|Ψ0 >= ih̄ lim

(t−t′)→0+
Πtotal(rt, r′t′) .

Including the Fourier transform of Π(r− r′, t− t′), one gets

< Ψ0|ρ̆(r)ρ̆(r
′)|Ψ0 >= lim

η→0+

ih̄

2πΩ

∑

q
eiq·(r−r′)

∫

dω e−iωη Πtotal(q, ω) ,

and by inserting Eq. (11) with V (q) = 4πe2/q2, yields

< Ψ0|ρ̆(r)ρ̆(r
′)|Ψ0 >= lim

η→0+

ih̄

2πΩ

∑

q
eiq·(r−r′)

∫

dω e−iωη q2

4πe2




1

κ(q, ω)
− 1



 .

The integration over ω can be performed ”as usual”, i.e., by the
help of Eq. (12), and the result of this calculation is

1

n0
< Ψ0|ρ̆(r)ρ̆(r

′)|Ψ0 >=
1

Ω

∑

q
eiq·(r−r′)



−
h̄q2

4π2e2n0

∫ ∞

0
dωℑ




1

κ(q, ω)







 .

A comparison of this result with Eq. (19) immediately leads to

< Ψ0|ρ̆(r)ρ̆(r
′)|Ψ0 >=

1

Ω

∑

q
eiq·(r−r′) [n0S(q)] = n0 S(r− r′) .

(21)
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Again, a new function:

The pair correlation function g(r, r′) describes how the probabil-
ity to detect a particle at r is reduced by a ”correlation partner”
at r′:

g(r, r′) =
< Ψ0|

∑N
i,j 6=i δ(r− ri)δ(r

′ − rj)|Ψ0 >

< Ψ0|
∑

i δ(r− ri)|Ψ0 >< Ψ0|
∑

j δ(r′ − rj)|Ψ0 >
,

(22)
where the operator in the numerator can be written as




∑

i

δ(r− ri)








∑

j

δ(r′ − rj)



−
∑

i

δ(r− ri)δ(r
′ − ri) .

Remember the density operator ρ̂(r) =
∑N

i=1 δ(r− ri).

By using this definition, Eq. (22) reads

g(r, r′) =
< Ψ0|ρ̂(r)ρ̂(r

′)|Ψ0 > − < Ψ0|ρ̂(r)|Ψ0 > δ(r− r′)

< Ψ0|ρ̂(r)|Ψ0 >< Ψ0|ρ̂(r′)|Ψ0 >
.

(23)
As already known, for a homogeneous electron gas, one has

< Ψo|ρ̂(r)|Ψ0 >= n0 ,

leading to

g(r, r′) =
< Ψ0|ρ̂(r)ρ̂(r

′)|Ψ0 >

n2
0

−
δ(r− r′)

n0
.

If we use here the - also previously installed - density deviation

operator

ρ̆(r) = ρ̂(r)− n0 ,

one gets the final result for jellium:

g(r− r′) = 1 +
< Ψ0|ρ̆(r)ρ̆(r

′)|Ψ0 >

n2
0

−
δ(r− r′)

n0
. (24)
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By comparing Eqs. (21) and (24), one gets immediately
an important relation between pair correlation function and
static structure factor:

g(r− r′) = 1 +
1

n0
[S(r− r′)− δ(r− r′)]

or, taking into account that all Fourier coefficients of a Dirac
distribution are 1,

g(r− r′) = 1 +
1

N

∑

q
eiq·(r−r′) [S(q)− 1] . (25)

Combining the equations (25) and (19), one obtains the result

g(r− r′) = 1−
1

N

∑

q
eiq·(r−r′)




h̄q2

4π2e2n0

∫ ∞

0
dωℑ




1

κ(q, ω)



 + 1



 .

(26)

This equation offers an important possibility to check the quality
of calculated approximations of the dielectric function κ(q, ω).
Fact is that the pair correlation function g(r−r′) must obey the
following conditions:

• As for all probability functions, the condition

g(r− r′) ≥ 0 für alle r, r′ (27)

has to be fulfilled.

• The condition

g(r− r′)→ 1 für |r− r′| → ∞ (28)

has also a simple physical interpretation: there is obviously
no correlation between particles with infinitely large dis-
tances. Consequently, the probability to find the first
particle at r will not be reduced by the second particle.
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2.3.1 Structure factor and pair correlation in the RPA

In the last sections, we discussed how the static structure factor
of an interacting electron gas (19), its ground-state energy (20),
and its pair correlation function (25) can be calculated only by
the knowledge of the function

ℑ




1

κ(q, ω)



 :

Sλ(q) = −
h̄q2

4π2e2n0

∫ ∞

0
dωℑ




1

κλ(q, ω)



 , (19)

E0 = 2
∑

|k|<kF

h̄2k2

2m
+ 2πn0

∑

q

1

q2

∫ e2

λ=0
dλ [Sλ(q)− 1] . (20)

g(r− r′) = 1 +
1

N

∑

q
eiq·(r−r′) [S(q)− 1] . (25)

The only approximation of the dielectric function discussed until
now is the random phase approximation RPA:

ℑ

(

1

κ

)

≈ ℑ

(

1

κRPA

)

However, this approximation is by no means the simplest one,
as we can learn from the Dyson expansion of (1/κRPA):

ℑ

(

1

κRPA

)

= ℑ

(

1

1− V Πpr(RPA)

)

= ℑ
(

1 + V Πpr(RPA) + · · ·
)

≈ V ℑΠpr(RPA) . (29)

Including a previously given result for ℑΠpr(RPA) (see Sec. 1.6
of this lecture), one gets

V (q)ℑΠpr(RPA)(q, ω) = −
2π

h̄(2π)3




4πe2

q2





∫

d3kΘ(kF − k)Θ(|k + q| − kF)

×
[

δ(ω + ω0
k − ω

0
k+q) + δ(ω − ω0

k + ω0
k+q)

]

.
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Inserting this into Eq. (19) leads to the integral
∫ ∞

0
dω

[

δ(ω + ω0
k − ω

0
k+q) + δ(ω − ω0

k + ω0
k+q)

]

= 1 ,

and to the simplest static structure factor:

S0(q) =
1

4π3n0

∫

d3kΘ(kF − k)Θ(|k + q| − kF) ,

what can be analytically evaluated (see Appendix 5) to

S0(q) = S0(q) =







3
2

q
2kF
− 1

2

(

q
2kF

)3
für 0 < q ≤ 2kF ,

. .

1 für q ≥ 2kF .

(30)

How do the corresponding ground state energy of the electron
gas and the pair correlation look like?

For the ground-state energy, one has to evaluate

E0 = 2
∑

|k|<kF

h̄2k2

2m
+ 2πn0

∑

q

1

q2

∫ e2

λ=0
dλ

[

S0(q)− 1
]

= 2
∑

|k|<kF

h̄2k2

2m
+
Ne2

π

∫ ∞

0
dq

[

S0(q)− 1
]

. (31)

The first term represents the
kinetic energy of the non-interacting electron gas:

T0 = 2
∑

|k|<kF

h̄2k2

2m
= N

3

5

h̄2k2
F

2m
=




h̄2

2ma2
B





︸ ︷︷ ︸

=1Ry

N
3

5

(

9π

4

)2/3 1

r2
s

= N
2.21

r2
s

Ry ,

and the second term in Eq. (31) gives the
potential energy of the interacting electrons

V0 = −N
3e2kF

4π
= −N

3

2π

(

9π

4

)1/3 1

rs
= −N

0.916

rs
,

(rs in aB = Bohr units).
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The total energy per particle reads

E0/N = (T0 + V0)/N =







3

5

(

9π

4

)2/3 1

r2
s

−
3

2π

(

9π

4

)1/3 1

rs






Ry

=




2.21

r2
s

−
0.916

rs



 Ry . (32)

This is exactly the result of the Hartree-Fock theory.

This statement also holds for the corresponding pair correlation
function.
Inserting S0(q), Eq. (30), into the formula (25), one gets

g0(r− r′) = 1 +
1

N

∑

|q|≤2kF

eiq·(r−r′)




3

2

q

2kF
−

1

2

(

q

2kF

)3

− 1





and after some elementary mathematical treatment

g0(r− r′) = g0(|r− r′|) = 1−
9

2

(

sin ξ − ξ cos ξ

ξ3

)2

with ξ ≡ kF|r−r′| .

(33)
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According to this graphical representation, Eq. (33) describes
the exchange hole around an electron, i.e., the reduced probabil-
ity of the presence of spin-parallel electrons around an electron.

This behavior is also typically Hartree-Fock-like; therefore, the
result g0 is the HF approximation of a pair correlation function.
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The next step for a better electron theory is evident:

Instead of the simple approximation (29), the total Dyson-result
of ℑ(1/κ)RPA has to be inserted into the energy equation (20):

Instead of

ERPA
0 = 2

∑

|k|≤kF

h̄2k2

2m
−
∑

q

∫ e2

λ=0

dλ

λ

[

2πn0λ

q2
+

h̄

2π

∫ ∞

0
dω Vλ(q)ℑΠpr(RPA)(q, ω)

]

one has to calculate

ERPA
0 = 2

∑

|k|≤kF

h̄2k2

2m
−
∑

q

∫ e2

λ=0

dλ

λ




2πn0λ

q2
+

h̄

2π

∫ ∞

0
dωℑ




1

κRPA
λ (q, ω)







 .

(34)
Such calculations have already been performed some decades
ago, e.g., by W. Macke [Z. Naturf. 5a, 192 (1950)], by M. Gell-
Mann and K. Brueckner [Phys. Rev. 106, 364 (1960)], by L.
Onsager et al [Ann. Physik (Leipzig) 18, 71 (1966)], by R.F.
Bishop und K.H. Lührmann [Phys. Rev. B 26, 5523 (1982)]
etc.

The results of these papers have been published mainly in form
of numerical tables, analytical expressions are only existing for
the high-density limit rs → 0:

lim
rs→0

ERPA
0

N
=

2.21

r2
s

−
0.916

rs
+0.0622 ln rs − 0.142 Ry (35)

where the coefficient 0.0622 corresponds to 2(1− ln 2)π2.

Remember: All energy terms beyond the Hartree-Fock terms
are (per definition) denoted as correlation terms:

lim
rs→0

ERPA
corr

N
= 0.0622 ln rs − 0.142 Ry . (36)

Now back to the main question:

What’s about the quality of the dielectric function and

the related quantites in the RPA and other approxima-

tions?

14



Concerning the correlation energy of the homogeneous electron
gas, theoretical results are usually compared

• not with real experiments,

• but with Quantum Monte-Carlo (QMC) experiments:

D.M. Ceperley, Phys. Rev. 18, 3126 (1978).

D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)
...

S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200
(1980).

G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994).

G. Ortiz, M. Harris, and P. Ballone, Phys. Rev. Lett. 82, 5317
(1999).
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Correlation energies as a function of rs. A comparison of various
theoretical approximations with the QMC standard.

• Note: the practically most interesting region of rs is
2 ≥ rs ≥ 6 (relevant for many insteresting metals).

• The solid line with (*) shows QMC results by
Ceperly et al. (1978).

• The dashed line means ”high-density results”, according to
Eq. (36). As previously mentioned, this formula is only
correct in the limit of rs → 0. Therefore, no reliable results
can be expected within the ”metallic region”.

• The circles belong to a numerical evaluation of Eq. (34),
i.e., based on a RPA of ℑ(1/κ) for the whole rs region. This
curve nicely approaches the ”high density curve” for small
rs, and it also shows a reasonable behavior for higher values
of rs. Nevertheless, its correlation energies lie significantly
below the corresponding QMC results.

Resumee: Except for very small values of rs, the random phase
approximation is not able to describe properly the correlation
energy in jellium.
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A further, even more impressing argument for severe deficiencies
of RPA results are calculations of the pair correlation function
g(|r− r′|), based on Eq. (26) including

κ(q, ω) ≈ κRPA(q, ω) .

Remember:

• g(|r− r′|) ≥ 0

• lim|r−r′|→∞ g(|r− r′|) = 1

The RPA for the pair correlation function in jellium for rs from
1 to 6 [see L. Hedin, PR 139, A805 (1965)].

Resumee: Evidently, especially for small values of |r − r′|, all
RPA curves violate the first condition mentioned above. This
deficiency gets more and more dramatic for increasing values of
rs.
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2.3.2 Sum rules for the dielectric function

The following is taken from: P. Ziesche und G. Lehmann,
Elektronentheorie der Metalle, Springer, Berlin, 1983, p. 30f..

For the dielectric function κ(q, ω), the literature offers several
sum rules (SR). These are important because they enable a the-
oretical testing of different approximations of κ.

For a more extensive treatment of this subject and a more
profound mathematical background see, e.g., D. Pines and P.
Nozieres, The Theory of Quantum Liquids, Benjamin, New York,
1966, and A. Sjölander, Nuovo Cimento 23B, 124 (1974).

• f -SR:
∫ dω

π
ℑ




1

κ(q, ω)



 ω = −ω2
p .

• Conductivity-SR:

∫ dω

π
ℑ (κ(q, ω)) ω = ω2

p ,

• Compressibility-SR:

lim
q→0

∫ dω

π
ℑ (κ(q, ω))

1

ω
= lim

q→0
Kn0M

ω2
p

q2
,

• Screening-SR:

lim
q→0

∫ dω

π
ℑ




1

κ(q, ω)




1

ω
= −1 + lim

q→0

q2

Kn0mω2
p

.

The following relations give informations about the
high-frequency behavior of κ:

lim
ω→∞

1

κ(q, ω)
= 1 + lim

ω→∞

ω2
p

ω2
und lim

ω→∞
κ(q, ω) = 1− lim

ω→∞

ω2
p

ω2
.

Further, there are some compressibility theorems as

lim
q→0

κ(q, 0) = 1+Kn0m lim
q→0

ω2
p

q2
und lim

q→0

1

κ(q, 0)
= lim

q→0

q2

Kn0mω2
p

.
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The above equations contain the following quantities: ωp means
the plasma frequency (see Sec. 1.6.1), n0 and m are the electron
density and the electron mass, and K is the compressibility of
the electron gas which is defined by

K = Ω
∂2E

∂Ω2
.

By the formula

K0

K
= 1−

α3

π
rs +

α3

6
r4
s




d2ǫcorr
dr2

s

−
2

rs

dǫcorr
drs



 ,

this quantity is related to the correlation energy per electron
ǫcorr, with

α =

(

4

9π

)1/3

and with K0, the compressibility of the free electron gas

K0 =
3

2n0ǫ0F
.
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