Summary Sec. 1.2.1:
The non-interacting Green’s function

Starting point: the general electron Green’s function (1.1):
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A perturbation calculation:

H:H()—f—f{l

Operator transformation: Schrodinger —  Heisenberg
Schrodinger —  Interaction
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Equation of motion of an Interaction Operator:
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The non-interacting Hamiltonian in the
particle number representation
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Equation of motion of the annihilation operator:
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and with respect of [éj, ffo] = hw}) Cj
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Solution of this differential equation:
éj[<t) = éj e 7

and -correspondingly- for the creation operator:

Now back to the Green’s function of the non-interacting electron:
Gy, g(rt, r't) =< DT [@ZHQ(”) @Z}f%(r’t’)} [Py >

with

H = H, and Ho‘q)() >= E0|(I)0 >

Important consequence: "Heisenberg = Interaction”:

Therefore one gets
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Expansion of the field operators with respect of the
annihilation and creation operators:
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and
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For T" — 0 K, the ground state of a system of non-interacting
electrons is given by a completely filled Fermi sphere with radius
kp.

For practical reasons, the operator ¢ is re-defined by the follow-
ing canonical transformation:

. axy annihilation of a particle state” for |k| > kg
Cky =3 2 ,
o b, 7creation of a hole state” for |k| < kg



Including this definition into the formula for the field operator
Yaor leads to

dar(rt) = 3 S (@) e “ag+ 3 S dilr)va(a) e b,

[k|>kp A [k|<kp A

Now such equations for zﬁa 7 and 1%1 are used in the expression
of Ggﬁ. In case of t > t/, one gets the following four matrix
elements:
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and
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The correspondent result for ¢ < t' reads
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leading to
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By using the integral representation
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@(t—t’):—/

o0 27w+ in

for the time-dependent Heaviside function, one finally gets (see
pp. 8 and 9 of my lecture notes)
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Choice of the one-particle eigenbasis:
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hli >=hli > — [—;—mv2 + v(r)] Ui (1) = hwpty(r)

with v(r) as a local, external potential energy that acts on the
electron.

The special choice:
homogeneous electron gas (jellium) — v(r) = 0:
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leads to the non-interacting Green’s function
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Obviously, this result is

e diagonal in spin space (because of d, 3)
e homogeneous in space and time:
GO
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An enormous advantage of this homogeneity is that one
can easily change from the {r;¢} space to the {k;w} space
by applying the Fourier transform
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Gk, w) = 0 G'(k,w)
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