Summary Sec. 1.4:
The concept of quasiparticles

From Sec. 1.2.1: Remember the Fourier coefficient of the

non-interacting Green’s function:
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Starting from this, one can prove the following statement:

The singularities of G(k, w) determine the energies and the decay
rates (= lifetimes) of the corresponding electron states.

In case of G°(k,w), one gets
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Here, the limitation 7 — 0 is trivial, and one obtains
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[Go(k, w)rl leads to the e(k) dispersion of a free particle.

In case of an interacting electron, the Green’s function looks like
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giving the singularity condition
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Taking into account that the solutions of the above equation will
generally lie on the complex w plane (w = v — i), one obtains
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" Experience teaches us” that - in most cases - the zeros lie close
to the real w axis, i.e.

v << vl
and the selfenergy function can be linearly Taylor-expanded:
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With ¥ = RY +i3X, one gets
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and a separation of this equation in its real and imaginary part

yields
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Taking into account only the leading terms (written in red), one
obtains the following important results:

e The real part of the proper selfenergy function >*" describes
the e(k) dispersion of an interacting electron (the energy
states of quasiparticles):
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Generally, this equation can only be solved iteratively. How-
ever, in many cases, it might be sufficient to perform only
the first iteration step.

e The (negative of the) imaginary part of the proper self-
energy function ¥ describes the decay constant (= the
inverse lifetime) of the corresponding quasiparticle state:
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The quasiparticle condition:

According to Heisenberg’s uncertainty condition, the finite life-
time 7 of a particle causes an uncertainty of its energy Ae such
that

TAe>h.

Therefore, for a precise measurement of the energy difference
between the excited electron state and the Fermi energy e, — ep,
the condition

Ae << € — €F

must be fulfilled.

Combining the last two equations, one gets the quasiparticle
condition
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A discussion of the simplest selfenergy function:

A numerical evaluation of the ”simplest” approximation of the
selfenergy function [Eq. (1.37) in my lecture notes|
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leads to the result (see appendix 2):

e2 A3k

pr(c) — _
H @) = =53 i k- WP

The calculation of this integral is elementary and one gets
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This approximation of the selfenergy is obviously
real and not dependent on w.



The consequences:

e The €9 (k) dispersion reads precisely
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and we learn ”from earlier lectures” (...) that this result
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is exactly the energy dispersion of electrons including the
Fock or exchange term.

e The lifetime of these ”quasiparticle states” is infinite:
Tk — OO.
The deviation of the energy function from the free-electron parabola
is due to exchange interactions inside the Fermi sphere. In fact,

no electrons are scattered out, and no quasiparticles outside and
holes inside the Fermi sphere with finite lifetimes are created.

The calculation of the electronic selfenergy by means of Feyn-
man diagrams of first order with respect to the Coulomb poten-
tial is equivalent to the (Hartree-)Fock ansatz.

Especially, for the homogeneous electron gas, one has
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Is this the most complete Hartree-Fock representation
a la Feynman?



A more careful investigation, especially in connection with inho-
mogeneous electron gases, shows that a more realistic diagram-
matic solution of the Hartree-Fock gas looks like
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(In fact, you will easily find the last graph above in the list of
diagrams given on page 12 of my lecture notes.)
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Obviously, the HF proper selfenergy insertion is enlarged as
shown in the following:
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The problem is now: is the solution (2) better than the ”old”
solution (1)?

This is hard to believe because - as it already has been shown -
the solution (1) leads exactly to the correct Hartree-Fock energy
dispersion of the homogeneous electron gas.

The problem’s solution: For jellium - and only for jellium,
the additional terms of the selfenergy (2) do not contribute, and

one has
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