
Summary Sec. 1.6:
The dielectric function of jellium in the RPA

Starting with the diagram that describes the simplest approxi-
mation1 of a polarisation insertion into a bare Coulomb interac-
tion line

and translating it into a mathematical formula, one obtains

Πpr
0 (q, ω) =




i

h̄

(−1)

(2π)4




∑

γ

∑

σ
δγσ

︸ ︷︷ ︸

=2

∫

d3q1dω1 G0(q1, ω1) G0(q1−q, ω1−ω) .

After having used Cauchy’s formula for the integration over ω1,
one gets the result

Πpr
0 (q, ω) =

2

h̄(2π)3

∫

d3k1Θ(kF − k1)Θ(|k1 + q| − kF)

×



1

ω + ω0
k1
− ω0

k1+q + iη
− 1

ω − ω0
k1

+ ω0
k1+q − iη



 .

This wavevector-, frequency-dependent and complex polarisa-
tion function shall now be split into its real and imaginary part.
This can be done by the frequently used formula

1

ω ± iη
= P

1

ω
∓ iπδ(ω) :

1Remember the names: ”ring” or ”bubble” approximation, or ”random-phase approx-
imation”.
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ℜΠpr
0 (q, ω) =

2

h̄(2π)3
P
∫

d3k1Θ(kF − k1)Θ(|k1 + q| − kF)

×



1

ω + ω0
k1
− ω0

k1+q

− 1

ω − ω0
k1

+ ω0
k1+q



 ,

ℑΠpr
0 (q, ω) = − 2π

h̄(2π)3

∫

d3k1Θ(kF − k1)Θ(|k1 + q| − kF)

×
[

δ(ω + ω0
k1
− ω0

k1+q) + δ(ω − ω0
k1

+ ω0
k1+q)

]

.

By using the general relation between polarisation function Πpr

and dielectric function κ, one gets further

κRPA(q, ω) = 1 − V (q) Πpr
0 (q, ω) ≡ κ1(q, ω) + iκ2(q, ω)

with κ1(q, ω) and κ2(q, ω) as the real and the imaginary part
of the dielectric function of jellium, respectively, in the ring or
random-phase approximation.

The analytical evaluation of the above integrals is rather tedious.
This job has been done at first (1954) by the Danish physicist J.
Lindhard. Here are the exact mathematical expressions of the
Lindhard formulas:

Real part κ1 of the dielectric function in RPA:

κ1(q, ω) = 1 +
k2

FT

q2

×







1

2
+

kF

4q














1 −

(

ω − h̄q2

2m

)2

q2v2
0








ln |ω − qv0 − h̄q2/(2m)

ω + qv0 − h̄q2/(2m)
|+

+







1 −

(

ω + h̄q2

2m

)2

q2v2
0








ln |ω + qv0 + h̄q2/(2m)

ω − qv0 + h̄q2/(2m)
|














.
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Imaginary part κ1 of the dielectric function in RPA:

q ≤ 2kF :

κ2(q, ω) =
π

2

k2
FT

v0

ω

q3
for 0 ≤ ω ≤ qv0 −

h̄q2

2m
,

κ2(q, ω) =
π

4

kFk2
FT

q3







1 −

(

ω − h̄q2

2m

)2

q2v2
0








for

qv0 −
h̄q2

2m
≤ ω ≤ qv0 +

h̄q2

2m
,

κ2(q, ω) = 0 else .

q ≥ 2kF :

κ2(q, ω) =
π

4

kFk2
FT

q3







1 −

(

ω − h̄q2

2m

)2

q2v2
0








for

−qv0 +
h̄q2

2m
≤ ω ≤ qv0 +

h̄q2

2m
,

κ2(q, ω) = 0 else .

These equations contain two constants which are defined as
follows:

k2
FT =

4me2kF

πh̄2 Fermi-Thomas wavenumber

v0 =
h̄kF

m
Fermi velocity

Due to the extraordinary important role of these functions in
solid-state physics, their properties will now be discussed in some
detail.
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Properties of the dielectric function in the RPA:

Static limiting case:

lim
ω→0

κ(q, ω) = κ1(q, 0) + i κ2(q, 0)
︸ ︷︷ ︸

≡0

and

κ1(q, 0) = 1 +
k2

FT

2q2



1 +
kF

q



1 − q2

4k2
F



 ln |q + 2kF

q − 2kF
|


 .

The corresponding FT of the effective potential:

W (q, 0) =
4πe2

q2 κ1(q, 0)
.

Back to real space:

W (r) =
1

Ω

∑

q

4πe2

q2 κ1(q, 0)
eiq·r .

Easy to evaluate in the long wavelength limit

κ1(q, 0) ≈ κ1(q << kF , 0) = 1 +
k2

TF

q2
:

W (r) ≈ 1

Ω

∑

q

4πe2

q2 + k2
TF

eiq·r =
e2

r
e−kTF r.

This simple approximation reflects an important feature of the
effective Coulomb potential: it is screened or shielded.

Without the long wavelength limit, the Fourier series can be
reduced to

W (r) =




e2

r




2

π

∫ ∞

0
dq

sin(qr)

qκ1(q, 0)
︸ ︷︷ ︸

F (r)

.
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A numerical evaluation of the screening function F (r):
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Analytically, the above Fourier integral can be solved at least
for the limit of large radii [see J. Friedel, Nuovo Cimento, Suppl.
7,287 (1958)]:

W (r → ∞) ∝ cos(2kFr)

r3
.

The screening of the effective potential is not exponentially but
oscillatory with a wavelength of π/kF . Such Friedel oscilla-
tions have often been experimentally observed, e.g. in Nuclear

Magnetic resonance (NMR) and scanning tunneling microscope

(STM) measurements.
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Dynamical limiting case:

Before we discuss this limit of the RPA dielectric function, we
refer once more to the relation

W (q, ω) =
V (q)

κ(q, ω)

that describes the FT of the effective interaction potential.

Obviously, the influence of the polarisation effect on the effective
potential is largest if one has

κ(q, ω) = 0 .

Now to the long wavelength limit which leads to the result

lim
q→0

κ(q, ω) = κ1(0, ω) + i κ2(0, ω)
︸ ︷︷ ︸

≡0

with

κ1(0, ω) = 1 − k2
FTv2

0

3

1

ω2
.

From that, one easily gets the resonance frequency

ωres(q = 0) =
kFTv0√

3
= . . . =




4πe2

m





1/2 √
ne . (1)

long wavelength limit means that one has a long-range polarisa-
tion effect of the electron gas, i.e., a huge number of particles
takes part on this process: this is called a

collective excitation of the electron gas

which behaves similar to a classical plasma: therefore, the reso-

nance frequency is more frequently called the plasma frequency:

ωres(q = 0) = ωp(0) .

The real existence of such plasma oscillations in crystalline me-
dia can be proved by energy loss experiments where one mea-
sures the energy loss of particles penetrating material foils.
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Ever if the incoming particles are in resonance with the
electronic plasma, i.e., if their kinetic energy is a multiple of
h̄ωp, the energy loss spectrum will show marking peaks:

Energy loss spectrum of 20 keV electrons penetrating an Al
foil of 2080 Angstrom [Marton, Simpson, Fowler, and Swanson
(1962)].

From a quantitative evaluation of these experimental data one
gets for Al a plasma excitation energy of 15.3 eV. This value
agrees nicely with the corresponding theoretical result based on
Eq. (1) → 15.8 eV.
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Apart from these limits, is it of course necessary and fruitful
to investigate the full, i.e., wavevector and frequency dependent
dielectric function κRPA, and according to the previous discus-
sions, we are mainly interested in the zeros of this function on
the complex ω plane:

κ(q, ω = ν − iγ) = 0 .

You surely remember the very similar situation when we treated
the theory of the selfenergy Σ(q, ω).

Provided that the condition |γ| << |ν| is fulfilled, the above
equation separates into

κ1(q, ν) = 0 and γ = κ2(q, ν)

(

∂κ1

∂ω

)−1

ν
.

Interpretation:

• Collective excitations of the electron gas happen at energies
h̄ν(q) where ν(q) mean the real roots of the real part of
the dielectric function. Consequently, h̄ν(q) is called the
dispersion relation of these excitations.

• Usually, collective excitations of the electron gas have damp-
ing factors γ proportional to the imaginary part of the di-
electric function.

• If a collective excitation with energy h̄ν(q) simultaneously
fulfills both equations

κ1(q, ν) = 0 and κ2(q, ν) = 0 ,

we call this an undamped plasmonic excitation.

• In the framework of quantum mechanics, these two aspects,
namely (i) the existence of an energy-momentum dispersion
and (ii) a finite lifetime of the excited state, make it reason-
able to interprete these collective excitations of the electron
gas as quasiparticles named plasmons.
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Real and imaginary parts of the dielectric function of jellium in
the RPA as a function of ω. q/kF = 0.650, 0.950, and 1.150.
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Interpretation:

• q/kF = 0.650 The real part of the Lindhard function has
a zero point at ≈ 2.2. At this point, the imaginary part of
κ is also zero:
All conditions of an undamped plasmon excitation are ful-
filled.

• q/kF = 0.950 At the critical value of q, the zero point of
ℜκ coincides with the end point of the region of ω where
ℑκ > 0:
This is the situation where the region of the undamped
plasmon excitations ends.

• q/kF = 1.150 In the region of q smaller but near to the
critical value, one observes more or less strongly damped
plasmon excitations.

• In the region where q is significantly larger than the critical
value, the damping of the plasmon excitations is so strong
that one cannot further call that a collective excitation:
in fact, the plasmon degenerates into many two-particle
(electron-hole) creations and annihilations.

These important consequences can be better overlooked in the
next diagram:
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Regions of electron-hole scattering and of undamped plasmon
excitations in the {q; ω} space, according to Lindhard’s formula.

• The dashed lines indicating the region where ℑκ(q, ω) > 0
are given by the expressions

h̄q2

2m
+ qv0 and

h̄q2

2m
− qv0 .

This region is dominated by more or less strongly damped
plasmon excitations or electron-hole scattering processes.

• Only outside this region, undamped collective excitations
may appear. The corresponding excitation energies and
their dependence on the wave vector q are also shown in
the above diagram (the red curve named ”PLASMONS”).
The corresponding dispersion relation is given by

ωp(q) = ωp(0)



1 +
9

10

q2

k2
TF

+ · · ·


 ,

where ωp(0) means the resonance frequency which has been
previously discussed.

This plasmon dispersion can be measured by inelastic X-ray
spectroscopy.
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Plasmon dispersion curves in aluminum, sodium, and cesium.
Comparison between theory and inelastic X-ray spectroscopy
measurements.

12



Interim result:

Remember: The simplest approximation of the selfenergy
of an electron gas is the real and frequency-independent
exchange approximation

h̄Σpr(k) =
i

(2π)4

∫

d3qdω1 V (q) ei(ω−ω1)η G0(k − q, ω − ω1) .

The next step of the theoretical description of Σpr is self-evident:

Reset the bare Coulomb potential V (q) in the above
equation by the effective interaction potential W (q, ω1).

Consequently, one obtains the dynamical selfenergy function

h̄Σpr(k, ω) =
i

(2π)4

∫

d3qdω1 W (q, ω1) ei(ω−ω1)η G0(k−q, ω−ω1) .

(2)

Including the random-phase approximation

W (q, ω1) ≈ WRPA(q, ω1) =
V (q)

κRPA(q, ω1)
,

one yields

h̄Σ(RPA)pr(k, ω) =
i

(2π)4

∫

d3q V (q)
∫ dω1

κRPA(q, ω1)
ei(ω−ω1)η G0(k−q, ω−ω1) .

• Due to the fact that κ(q, ω1) is both frequency-dependent
and complex, the dynamical selfenergy has these properties,
too, what means that the corresponding quasiparticles have
finite lifetimes.

• The mathematical evaluation of Σ(RPA)pr(k, ω) is the next
topic of this lecture.

However, in order to be able to perform such a calculation,
we have to learn some more details about the dielectric
function κ.
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Summary 1.7:
Time-ordered and retarded response functions

• Response functions are functions which answer to pertur-
bations of the system to be investigated, e.g., they describe
how an electron gas reacts on a penetrating particle.

• Typical response functions treated in our context are

Σ(q, ω) Π(q, ω) κ(q, ω)
1

κ(q, ω)

• Time-ordered functions are functions which have been de-
rived from Green’s functions including the time-ordering

operator T̂ .

The most important object in connection with effective interac-

tion potentials is the inverse of the dielectric function

1

κ(q, ω)

which has been extensively discussed in the previous sections.

However, depart from a derivation of this function from a Dyson
equation, there exists another independent theoretical access to
this quantity, by means of time-dependent perturbation theory.

A detailed description of such procedure would overstress the
intentions of this lecture, but can be found in many textbooks:

D. Pines, The Many-Body Problem, Benjamin, Reading, 1962,
p. 235ff,

D. Pines, Elementary Excitations in Solids, Benjamin,
New York, 1964, p. 121ff.

The result of such a calculation reads



1

κ(q, ω)





T

= 1+
4πe2

h̄q2

∑

n
| (ρ̂q)n0 |2

{

1

ω − ωn0 + iη
− 1

ω + ωn0 − iη

}

,

(3)
where ”T” means time-ordered.
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Evidently, the above exact result is not directly useful for a nu-
merical evaluation, because it contains several unknown quanti-
ties, e.g. |(ρ̂q)n0|2, the matrix element of the density fluctuation

operator ρ̂q with respect to the unperturbed states < n| and
|0 > of the interacting electron gas with its excitation energies
ωn0 = (En − E0)/h̄.

Nevertheless, Eq. (3) is useful for some general statements about
response functions, especially about 1/κ:

• The function 1/κ is not analytical, neither in the upper nor
in the lower ω half-plane.

• Separating Eq. (3) in its real and imaginary parts by means
of

1

ω ± iη
= P

1

ω
∓ iπ δ(ω)

leads to

ℜ



1

κ(q, ω)





T

= 1+P
4πe2

h̄q2

∑

n
| (ρ̂q)n0 |2

{

1

ω − ωn0
− 1

ω + ωn0

}

and

ℑ



1

κ(q, ω)





T

= −4π2e2

h̄q2

∑

n
| (ρ̂q)n0 |2 {δ(ω − ωn0) + δ(ω + ωn0)} .

• These results immediately reflect the relation




1

κ(q,−ω)





T

=




1

κ(q, ω)





T

.

• An extremely important equation can be derived from an
extended version of Eq. (3):




1

κ(q, ω)





T

= 1 +
4πe2

h̄q2

∫ ∞

0
dσ

∑

n
δ(σ − ωn0) | (ρ̂q)n0 |2

×
{

1

ω − σ + iη
− 1

ω + σ − iη

}

.
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If this expression is combined with ℑ(1/κ) for positive fre-
quencies,

ℑ



1

κ(q, σ)





T

= −4π2e2

h̄q2

∑

n
| (ρ̂q)n0 |2 δ(σ − ωn0) ,

one gets




1

κ(q, ω)





T

= 1 +
1

π

∫ ∞

0
dσℑ




1

κ(q, σ)





T {

1

σ − ω − iη
+

1

σ + ω − iη

}

.

(4)

What goes wrong with this result?

Remember: ”Time-ordered” means that - in the Green’s func-
tion - both cases t > t′ and t < t′ are accepted, provided that the
order of the two Heisenberg field operators is suitable chosen.

Such time-ordered functions are powerful tools for doing
calculations,

BUT - for answer functions - they have a severe
deficiency:

they violate the principle of causality.

If this principle is taken into account, time-dependent perturba-
tion theory obtains - instead of Eq. (3) - the so-called
retarded version of 1/κ:




1

κ(q, ω)





R

= 1+
4πe2

h̄q2

∑

n
| (ρ̂q)n0 |2

{

1

ω − ωn0 + iη
− 1

ω + ωn0 + iη

}

.

• This retarded function (R) has all its poles on the lower
half-plane of ω:
it is analytical on the whole upper half-plane.

• A corresponding analysis of this function as for its time-
ordered counterpart leads to




1

κ(q,−ω)





R

=




1

κ(q, ω)





R∗
(5)
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• and further to

ℜ



1

κ(q,−ω)





R

= ℜ



1

κ(q, ω)





T

and

ℑ



1

κ(q,−ω)





R

= sign(ω)ℑ



1

κ(q, ω)





T

.

• The corresponding relation to Eq. (4) reads



1

κ(q, ω)





R

= 1+
1

π

∫ ∞

0
dσℑ




1

κ(q, σ)





R {

1

σ − ω − iη
+

1

σ + ω + iη

}

.

From this equation, it follows immediately

ℜ



1

κ(q, ω)





R

= 1+
1

π
P
∫ ∞

0
dσℑ




1

κ(q, σ)





R {

1

σ − ω
+

1

σ + ω

}

.

and - using the relation (5)

ℜ



1

κ(q, ω)





R

= 1 +
1

π
P
∫ ∞

−∞
dσℑ




1

κ(q, σ)





R
1

σ − ω
.

(6)
This important connection between the real and the
imaginary part of a response function is called the

relation of Kramers and Kronig.

Without derivation: There is also a complementary Kramers-
Kronig relation that reads

ℑ



1

κ(q, ω)





R

=
1

π
P
∫ +∞

−∞
dσ




1 −ℜ




1

κ(q, σ)





R





1

σ − ω
.

Consequences of the principle of causality:

• Retarded response functions are analytical on the
(complex) upper half-plane of ω.

• Real and imaginary parts of response functions are
connected via the Relation of Kramers and Kronig.
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Summary 1.8:
Importance and application of Eq. (4)




1

κ(q, ω)





T

= 1+
1

π

∫ ∞

0
dσℑ




1

κ(q, σ)





T {

1

σ − ω − iη
+

1

σ + ω − iη

}

.

Many calculations in solid-state physics contain effective dynam-
ical potentials and require the evaluation of ω integrals which
are often performed by using Cauchy’s formula. By doing so, the
residua of the function under the integral have to be calculated;
this procedure is often complicated by the difficult singularity
system of functions like 1/κ(q, ω1 + iω2).

This work is extraordinarily simplified by the use of Eq. (4)
where the ”pole situation” on the complex ω plane is described
by two simple terms.

The prize for this advantage is the appearence of an additional
integration along the positive real σ axis. The integrand con-
tains the imaginary part of 1/κ, and this function is generally
quite a ”well-behaved function” of σ. Therefore, a numerical
evaluation of the σ integration is in many cases an easy task.

The properties of the function ℑ(1/κ) in the RPA

Sketch of the imaginary part of ℑ(1/κ) as a function of σ.
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As you already know, the function ℑ
(

1
κ(q,σ)

)

consists of two

contributions: the continuum part for

ωmin(q) ≤ σ ≤ ωmax(q)

and the (undamped) plasmapole part at σ = ωp(q) with the
property

ℜ(1/κ) = ℑ(1/κ) = 0 .

Writing
κ(q, σ) = κ1(q, σ) + iκ2(q, σ) ,

one gets

ℑ



1

κ(q, σ)



 = − κ2(q, σ)

κ2
1(q, σ) + κ2

2(q, σ)
. (7)

This function is well-behaved in the continuum region.

The (undamped) plasmon zero has the properties

κ1(q, ωp(q)) = 0 and κ2(q, σ) ≡ 0 (around ωp).

Mathematical procedure:

κ2(q, σ) is reset by κ2(q, σ) = η with η > 0,
and κ1(q, σ) is linearly Taylor expanded at σ = ωp(q):

κ1(q, σ) ≈ κ1(q, ωp(q))
︸ ︷︷ ︸

=0

+

[

∂

∂σ
κ1(q, σ)

]

ωp(q)
︸ ︷︷ ︸

=κ′

1
(q)

(σ − ωp(q)) .

Including this into Eq. (7), one gets for the
plasmapole contribution (P)

ℑ



1

κ(q, σ)





P

≈ lim
η→0

(−η)

[κ′
1(q) (σ − ωp(q))]

2 + η2
.

This limit is one of the numeral ways to represent Dirac’s delta
distribution, and one gets as an approximation of ℑ(1/κ) for the
plasmapole region

ℑ



1

κ(q, σ)





P

≈ − π

κ′
1(q)

δ (σ − ωp(q)) .
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Combining this with Eq. (7) reads

ℑ



1

κ(q, σ)



 ≈ −



κ2(q, σ)

κ2
1(q, σ) + κ2

2(q, σ)





︸ ︷︷ ︸

ωmin(q)≤σ≤ωmax(q)

− π

κ′
1(q)

δ (σ − ωp(q)) .

Remember:

• According to Lindhard’s results, one has

ωmin = max



0,−qv0 +
h̄q2

2m



 and ωmax = qv0 +
h̄q2

2m
.

• The plasmapole term is only existing as long as the condi-
tion

ωmax(q) < ωp(q)

holds.
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