Computer Tomography: A Short Summary

1. Introduction

2. Theoretical background of the program

|1 Introduction|

Fourier analysis plays an enormous role in many fields of physics. In the fol-
lowing, we would like to discuss the problem of computer tomography (CT),
a method to reconstruct two- (2D) or three-dimensional (3D) distributions
of various physical quantities from a finite number of one-dimensional (1D)
profiles by using the method of discrete Fourier transformation. Nowadays,
such methods of reconstruction have become more and more popular in Solid
State Physics, e. g., to obtain 3D momentum densities of electrons in crys-
tals on the basis of experimentally yielded 1D Compton profiles. Especially
important is the method of CT in the medical diagnosis, in order to get 3D
informations about the interior of the human body based on a series of 2D
X-ray pictures.

The mathematical background for computer tomography has been created by
Cormack and Hounsfield who were honored by the Nobel Prize for medicine
in 1979.

There is a number of mathematically different methods for CT reconstruc-
tions, but the most important one is based on Fourier transformations. The
principles of this method are described in numerous textbooks and shall not
be repeated here. The following explanations concerning CT are mainly
taken out of the textbook of P. L. DeVries, A First Course in Computational
Physics, John Wiley, Inc., New York, 1994.

‘2 Theoretical background of the program

The principle of the geometry of CT is presented in Fig. 1. An object with
the mass distribution f(x,y) is situated in the (x;y) space and is penetrated
by an X-ray (dotted line) whose position and direction are determined by
the angle ¢ and the minimal distance ¢ from the origin of the coordinate
system. While penetrating the object, the intensity I of the X-ray is reduced
according to

I1=1I, e—fdnf(way) ,

where dn means a differential element of the way of the X-ray through the
object. The (negative) logarithm of the ratio I/1y,

peid) =~ (1) = [dnfGw), (1)
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Figure 1: Geometry of CT: a projection function (profile) p(&, ¢) of the ob-
ject is obtained if a series of X-rays penetrates it parallel to the axis n and
perpendicular to the axis £, where ¢ means the angle between the direction
¢ and the axis = of the fixed Cartesian system (x;y).

is called the projection function p(€,¢). If one uses a number of parallel
rays with constant ¢ and different values of £ — equally distributed over the
interval [—& s, Emaz] —, ONe obtains a one-dimensional profile of the object
for the angle ¢.

The main goal of CT is to reconstruct the 2D mass distribution
f(z,y) using a finite number of profiles p(¢, ¢).

According to Fig. 1, there exist two coordinate systems: the first one (z;y)
is firmly connected with the scanned object, and the second one (&; 7) rotates
by the angle ¢. The relation between these systems is simply given by

E=xcosp+ysing and N = —xsing+ ycoso. (2)

The first step of the calculation is a Fourier transformation (FT) of the
function f from real space (z;y) in the reciprocal space (ky;k,):

1 +oo )
F(ky, ky) = //700 dzdy f(z,y) elkesthuy) (3)
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According to Fig. 2, we can also define the wave vector k in the (£;7) system
by
ke = kg cos ¢ + kysin ¢ and ky, = —kgysin ¢ + kycos ¢, (4)

and it can easily be shown that the exponential factor in Eq. (3) has the

property
ei(kmac—l—lcyy) — ei(k5§+knn) . (5)

Now to an important point: we do not calculate the FT of f(x,y) for the
whole (k;; ky) space, but only along the k¢ axis (i. e., for k, = 0); conse-
quently, with

kg = k¢ cos ¢ and ky = kesing,
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Figure 2: The coordinate systems in k space corresponding to Fig. 1.
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Figure 3: Distribution of the Fourier coefficients of the mass distribution
function f(z,y) in the (k;;k,) space, as obtained by Eq. (7).

we get
1 +00 .
F (ke cos ¢, kesin ¢) = oy // dzdy f(z,y) e .
™ —0o0

Taking into account that dzdy = d€dn, the last expression can be transformed
into

F (k¢ cos ¢, kesin @) = % /_J:o d¢ (/_J:o dn f(z, y)) et (6)

and a comparison between Eqgs. (6) and (1) leads to the important equation

1 —+00 ,
Flkecos g, kesing) = 5= [ dep(€;6) s (7
T J—o0
This equation represents a relation between the (measured) profiles and the
Fourier coefficients of the wanted mass distribution for arguments (k,; k)
along radial lines in the k space (Fig. 3).

We are now confronted with a problem: in order to determine the mass distri-
bution function f(z,y) from its Fourier coefficients F'(k,, k,), an inverse FT
has to be performed. Such a calculation would be relatively easy if F' would
be known for arguments (k,; k,) arranged on a Cartesian point lattice. How-
ever, as we see from Fig. 3, this is obviously not the case! A transformation



of the Fourier coefficients from polar coordinates to Cartesian coordinates by
interpolation would be problematic because such interpolations would cause
local errors in k space, and during the following inverse FT, these errors
would spread out without control over the (z;y) space.

Therefore, a direct inverse FT is rarely applied to CT. Instead of this, a
special method of back transformation is used where all (unavoidably) inter-
polations can be done in real space.

How can we do that? Let’s start from the inverse FT which belongs to Eq.
(3) 1 400
f(x, y) = % /[w dkzdky F(kz, ky) e_i(kwx‘f'kyy) ) (8)

Remember: the arguments (k,; k,) lie on the axis k¢; we have therefore
ky = pcos ¢ and ky = psin¢
with p = \/Im and
x=rcos© and Yy =rsin®
leading to (see Fig. 4)
kyx + kyy = prcos ¢ cos © + prsin ¢sin© = prcos(O© — @) . 9)

Taking this into account, Eq. (8) takes the form

1 oo 2w |
f(rcos®©,rsin®) = o / / dedp p F(pcos ¢, psin ¢) e~ cos(0=9)
]_ o s '
= 5 / / d(bdp P F(P COS (b, pSin ¢) e_’LP'I‘ cos(©—a¢) i
1 oo 2w |
+2_ / d(bdp 1% F(p COS (b, P Sin (ZS) e*’tp’r’ COS(@7¢)
mJo p
1 oo rT .
= — / / d¢dp p F(p COS ¢, psin ¢) e*’&p’l’ COS((—)7¢) +

1 oo fr .
+— / / dd)dppF(_p cos ¢, —psin d)) o Tipr cos(0—¢)

2w Jo Jo

1 gr o0 .
=5 / d¢{ / dp p F(pcos ¢, psin ) e #7079 4
21 Jo 0

+ / dp p F(—pcos ¢, —psin @) e“””"s(e“z’)}. (10)
0

Because of the fact that the vector k has only a component k¢, we can set
p = k¢ in the last but one integral and p = —k¢ in the last integral. This
leads to the result

1 ™ +oo .
f(rcos©,rsin®) = gy / d(b/ dke |ke| F (kg cos ¢, ke sin @) e ker cos(©-¢)
0 —00

™

and, including the relation & = 7 cos(© — ¢), we get

™ 1 +oo )
f(rcos®,rsin®) = / d¢{2—/ dke |ke| F (ke cos ¢, ke sin ¢) e_’kﬁf} ,
0 ™ J—0
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Figure 4: Explanation of Eq. (9).

The quantity within the brackets {---} is called the modified projection
p(&; @), and our final result reads

f(@.y) = (reos ©575in©) = [ dop(&; @) (1)
with 1 oo
PE0) = o /_ " dke ke| F (ke cos g, kesin g) e (12)
and
£ =rcos(© —¢) =xcos¢p+ ysing. (13)



