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We present a numerical analysis of the vacuum structure of periodic QED in 2 + 1 dimensions.
We use a Hartree-Fock ansatz of a bilinear Gaussian wave functional on which we impose the con-
ditions of gauge invariance and compactness. This ansatz has the correct structure in the weak-
coupling limit and can be solved by employing a dilute-gas expansion. A numerical investigation
substantiates the result of an exponentially increasing dynamical mass but deviates in detail from the
analytic approximation. Using a Monte Carlo program we obtain agreement with the dilute-gas ap-
proximation for weak coupling, exhibit the behavior for strong coupling, and establish the viability

of this form of analysis.

I. INTRODUCTION

The Hamiltonian of the U(1) gauge theory (periodic
QED) is
g’ 1
=——2E12+—2— > (1—cosB,) , (1.1)
2 1 g P
where the electric field E; is defined on the link [ to be

the canonical variable conjugate to the angle 0 <6, <21
B, is the magnetic field defined on the plaquette p,

) '
E1=—la_91, Bp=(VX91)p . (1.2)
This is a confining theory in 2 + 1 dimensions.’
Eliminating the gauge freedom
0[—)91—(Va,‘)1 (1.3)

one realizes that the independent variables are the pla-
quette fields B,. Describing the vacuum by a Hartree-
Fock wave function, in which B, plays the role of the
conjugate momentum of a free field,”> one observes that
the requirement that this ansatz be compact, i.e., invariant
under the local transformation

91—)91+21TN1 ’ (1.4)

leads to the.appearance of a dynamical mass which sig-
nals confinement. This mass vanishes as g—0 with an
essential singularity, which is also an expected feature of
QCD in 3 + 1 dimensions, hence the interest in investigat-
ing this problem.

Using a cluster expansion Suranyi* has obtained the fol-
lowing expression for the mass in this limit,

202 2
m2= am (7T4 4) exp | — 1; sz—l/Z
g gV %

) (1.5)

where Dy denotes the negative of the lattice Laplacian in

momentum space:
Dy =4—2cosk;—2cosk, . (1.6)

This result has exactly the same characteristics as the
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solution by Gopfert and Mack® of the Euclidean version
of this model in three dimensions.

We present a numerical investigation of the Hartree-
Fock ansatz, a variational wave function which incorpo-
rates the correct long-range correlations at weak coupling
and can interpolate throughout the whole range of g.
Our purpose is to calculate m (g) for a finite range in g
and establish the properties of this ansatz that can be ob-
tained in a Monte Carlo calculation.

In Sec. II we present a general formulation of our an-
satz. The Hartree-Fock wave function is written for a
noncompact link variable ¢;. To relate it to 6, and im-
pose compactness on the wave function we use an integer
link field, and in order to render it gauge invariant we use
an auxiliary vertex field. In Sec. III we derive the weak-
coupling expression for the energy by using a dilute-gas
approximation for the curl of the integer link field. This
expression is investigated numerically. We show that the
minimum is obtained by a mass which is somewhat dif-
ferent from the analytic approximation (1.5) in the region
m >0.1, where it becomes measurable. Section IV de-
scribes our Monte Carlo calculation. We find agreement
with the dilute-gas approximation for weak coupling and
display data which exhibit the effect of compactness on
confinement for strong coupling.

II. THE HARTREE-FOCK ANSATZ

Let us start by setting up the ansatz in a form that does
not presume the use of specific gauge-invariant variables.
Our first task is to decompactify the angular variable.
This is done by using

V(6= [ Dge VT S 6(6,—p—27N)) .
i N

(2.1

¢; are noncompact link variables and N, are integers de-
fined on links. To render our ansatz gauge invariant we
perform the projection®

PY= [ Da,¥({6;—(Va,)}) 2.2)
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with the U(1) parameter a; defined on the vertices of the
lattice. This auxiliary field may be chosen to be noncom-
pact. The norm of the resulting wave-function is

2= [ 20%PY

=3 [ D¢ Dae49+TatimNh—4s) (23
(v}

and the expectation value of the Hamiltonian becomes

(H)=2'3 [ 2¢,Da,e—A1s+Tat2N)
(N}

XH({¢})e= 41, (2.4)
where the noncompact variable ¢; replaces 6; in H.

We look now for an ansatz for A({¢}) which mini-
mizes the ground-state energy (2.4). We use a general bi-

linear Gaussian form

A({$))=7 3 ¢, A1), 2.5
L
where A has the Fourier decomposition
) ) T T ' :
AL L) =—22 3 T2 (2.6)
k

In this expression the link / is represented by its origin ?
and direction p. The sum is carried out over all lattice
momenta and V is the total volume (number of lattice ver-
tices).

With this series of steps we have brought our problem
into a form of statistical mechanics in two spatial dimen-
sions. This allows the use of Monte Carlo techniques for
the evaluation of (2.4). For a given set of ¢ one can

easily generate ¢ fields in k space whose distribution is
determined by e ~4‘?), One may then randomly generate
{a;} and {N,} distributions to evaluate (2.4). Since the
number of independent 'c? is Vit pays to start from some

suitable parametrization that is motivated by a theoretical
approximation. Such an expression is available in the
g2—0 limit.

III. THE DILUTE-GAS APPROXIMATION

For the derivation of the weak-coupling limit it is use-
ful to consider separately the longitudinal and transverse
parts of the vector fields. In particular, let us decompose
the integer link variable into

N;=Vn;+VXe,, (3.1)

where 7; and €, are vertex and plaquette fields, respec-
tively, obeying Laplace equations with integer sources,

V2 =V-N;, V,=—VXN;. (3.2)

In our two-dimensional problem ¢, is understood to point
in the z direction and the curl operator connects it to the
N, field in the x and y directions. With this separation
we may rewrite the exponential terms of (2.4) as

Va'

A(p+Va+27N)+A($)=2A4(¢")+2A4 >

+24(wVXe), (3.3)
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where ¢’ and @’ are the shifted fields

¢'=¢+VT“+7V><5, a'=a+2mry . (3.4)
The electric term of the Hamiltonian depends on all
variables whereas the magnetic term depends only on' the
transverse part. The longitudinal part of the integer field
just shifts the a field and has no effect on the calculation.
The integration over the fields ¢ and a can be carried out
in closed form for the Gaussian distribution (2.6) but the
transverse part of the integer field, V X €, can be calculat-
ed only by approximation. Note, however, that its distri-
bution can be simply expressed as

24 (7YX )= —1 S plk)pl —k)~%- | (3.5)
3 Dy,

where p(k) is the Fourier transform of the source of the
equation of motion of €

pr=—(VXN;), .

The value of the energy can then be derived by using a
cluster expansion whose underlying assumption is that the
p field is a dilute gas of monopoles (p=+1 at largely
separated locations, p=0 otherwise). In this limit one
finds that

2
c’
Epe=(H)=%- %Eck—Z'trZZBIE—e M2
k % Dk
~LeMu—ae ™ L e
g
where
1 Dy 2 Ck
Mi=—3—, M,="3
4V k Cr V k Dk

The variation of the energy with respect to ¢, can be
solved analytically in the weak-coupling limit. It turns
out that the ansatz

Dy
g*Boy
minimizes (3.6) in the limit g-—0 with B obeying the con-
sistency condition

k= , wpl=Dy+m? (3.7

Br=e" /(1—4e M1
and the mass given by

s ATm—4—dn?e ™) _m-m,
m-= 2 e .
g

This ansatz may be interpreted as assigning to VX ¢ the
role of a canonical momentum of a free field of mass m.
In the weak-coupling limit M;—0 and M,— .
Equation (3.8) can be approximated by using in the calcu-
lation of both M; and M, the values B=1 and m =0.
Equation (1.5) is a further simplification of this formula
in which only the leading terms were kept. This approxi-
mation is presented as the dotted line in Fig. 1, where it is
compared with the iterative solution of (3.8) (dashed line)

(3.8)
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FIG. 1. Mass curves for the dilute-gas approximation. The
full line represents the result of numerical minimization of Epg.
The dashed curve is the iterative solution of the analytic approx-
imation (3.8) and the dotted curve is the result of (1.5).

and the result of minimizing Epg. We have used the
momentum space of a 9? lattice to construct the functions
M, , of (3.6) which are needed for the numerical evalua-
tion of Epg as well as m of (3.8) and (1.5). This lattice
size was chosen in order to enable us to compare these re-
sults with the Monte Carlo calculations which will be
described in the next section.

The comparison between the different mass curves is
carried out over a range of g in which the dilute-gas ap-
proximation holds. We find that the mass obtained by the
numerical minimization lies lower than the analytic ap-
proximation but has the same exponential trend. It lies
quite higher than the simplest approximation (1.5). The
value of the mass is very sensitive to the value of 8. Thus,

‘for example, the mass values that are obtained by mini-
mizing Epg for B=1 lie outside the scale of Fig. 1. Over
the range 0.65 <g <0.8 we find that the best B8 (for which
Epg has a global minimum and m obtains the displayed
values) increases linearly between 1.12 <8< 1.19.

A very important feature of the numerical evaluation is
that the variation of B and m leads to only minute
changes in the energy, hence the minimum of Epg in the
(B,m) plane is very shallow. Characteristic values of
(1/E)3E /dm are of order 108 This is so because the
physical effect that we are looking at is tunneling between
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FIG. 2. The energy density in the dilute-gas approximation
at g=0.8 is displayed as a function of the mass for ten values of
B varying from 1.1 to 1.28 by steps of 0.02.
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FIG. 3. The noncompact problem (3.9) displays an abrupt
transition from a massless solution (whose energy is given by the
full line and B by the dotted curve) to the strong-coupling result
(infinite mass) E =1/g2

vacua of different integer-field distributions. An example
of an energy surface is presented in Fig. 2. We show the
case of g=0.8 with 3 varying between 1.1 to 1.28. The
minimum of the energy density is obtained at S=1.19 and
m=0.542 and its value is 0.874 720. This shows us that it
will be very difficult to find the optimal mass value by a
Monte Carlo calculation.

It is instructive to look for the solution to our problem
with the integer field turned off. This corresponds to us-
ing an ansatz which is gauge invariant but is not compact.
In this case one can solve for the energy within our
Hartree-Fock wave function in a closed form. The result

can be read off (3.6) by dropping the e M2 terms:

1 Dy, |14
_— —_— —_ 3.9
W =g +g2 (3.9)

2
g v
Enc= Cy — —5exp
4 % g’

In the weak-coupling limit this is solved by (3.7) with
m =0. This massless solution continues to be valid over a
finite range of g with only B adjusting itself. The varia-
tion of the energy as well as S is displayed in Fig. 3. At
g=1.13 the strong-coupling solution takes over. This
solution has energy-density 1/g? and its wave function is
constant, i.e., it may be characterized as having m = c0.
We conclude that the noncompact approximation under-
goes an abrupt transition from a massless mode to a com-
pletely confining one.

IV. MONTE CARLO CALCULATIONS

It is to be expected from the analysis in the previous
section that we will need highly accurate numerical results
in order to establish the correct mass of the vacuum struc-
ture. The effect leading to the best mass is due to tunnel-
ing between different N values, and it is as small as a tun-
neling effect can be. We will first of all establish the re-
gion where the numerical results agree with the dilute-gas
analysis and then move to stronger couplings.

We will quote results of calculations carried out for a 9°
lattice. We found this lattice size to be a convenient
compromise between our quest for accuracy and our wish
to avoid exorbitant computer runs. The calculation pro-
ceeded in the following way. For a given set of values of



B and m in our ansatz (3.7) we first generated the Gauss-
ian distribution of ¢’ in k space, anticipating the decom-
position of the action according to (3.3). In a similar way
we generated the distribution of Va’. Once this was done
we used a Fourier transformation to generate the distribu-
tion of the same fields in configuration space. At this
point we added the integer field using a Metropolis algo-
rithm to satisfy also the last term of the action in (3.3).
We worked directly with the plaquette field p,. Had we
imposed periodic boundary conditions on the integer link
fields, we would be restricted to monopole-antimonopole
pairs. It is necessary to allow for free monopole distribu-
tions to reconstruct the correct results at weak couplings,
especially so if one works on a small lattice. Once all the
distributions were generated we reconstructed the original
¢ fields and measured the Hamiltonian. Typically we ran
500 iterations for each point (i.e., specified values of 3,m,
and g).

For very weak couplings, g <0.6, the integer field is
inactive and the energy is well approximated by the non-
compact expression Enc of (3.9). Correspondingly, the
Monte Carlo calculations show that the mass vanishes. In
order to make contact with the dilute-gas approximation,
which should manifest itself above g=0.6, we fix f=1
and vary only m. An example of the resulting data for
g=0.7 is displayed in Fig. 4. Every data point shown
here is based on 8000 iterations and took 8 minutes to
compute on the 8 MIPS CPU of the IBM 3081. This is
compared with the variation of Epg(B=1,8=0.7). All
data points agree very well with Epg within the statistical
errors.

The best m, which is obtained by varying also f3, is
much smaller: it is m=0.16540 at S=1.143. This is the
value on the curve of Fig. 1 at g=0.7. The analytic cal-
culation of the previous section gives Epg=0.898115 at
the minimum compared to Epg=0.900596 for B=1 and
m =0.84, the one shown in Fig. 4. Since at this value of g
we established that Epg reproduces correctly the data, we
can rely on the calculation of the “best m” value in Sec.
III and do not have to search for it numerically. ‘

Varying g we find that the agreement with the dilute-
gas approximation continues to hold throughout the range
g <0.9. After that we do not have a valid theoretical ap-
proximation to work with, nonetheless we can continue

09125 —
0.9100 |
0.9075 |

0.9050 |

Energy Density

0.9025 |

0.9000 |

Mass

FIG. 4. Results of the Monte Carlo calculation show com-
plete agreement with the dilute-gas approximation (full curve)
for g=0.7 and B=1.
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FIG. 5. Monte Carlo analysis at g=1.5 displays a clear
minimum at m=1.7 for B=1.

the Monte Carlo investigation. Using a fixed value of 8
(e.g., 1) one finds that the mass increases with g for a
while, and then reverses the trend and tends to zero.
However, massive solutions continue to exist for lower 3
values. A characteristic case, for g=1.5, is shown in Fig.
5. It is particularly impressive to note the pronounced
minimum observed here, in contrast to the shallow
minimum for g=0.7 displayed in Fig. 4. The m — oo end
of the curve, which represents the correct solution at
g— o0 comes down and is much closer to the minimum
value of the curve, as expected.

An unpleasant surprise is found by varying 3: we ob-
tain vacua with all possible mass values, all of which have
energy densities of about 0.42 for g=1.5. The two extre-
ma are m =0 for which B=1.4 and the energy density is
0.424+0.001, and m— o with B=0 and Bm=2.8 for
which the energy density is 0.422+0.002. It is a tedious
and costly procedure to find the lowest energy density.
We found it to be around m=26 and B=0.01 for which
we obtained an energy density of 0.419+0.001. All these
values are close to the prediction 0.4226 of strong-
coupling perturbation theory at g=15.° Similar results
were obtained when we limited ourselves to dipole p dis-
tributions. We conclude that the mass which governs the
structure of the vacuum continues to grow with increasing
coupling.

V. SUMMARY

We have carried out a numerical analysis of a wave
functional that has been used until now for analytic ap-
proximations only. Our ansatz employs the correct
behavior of a free-field theory and is applicable in the
weak-coupling domain of an asymptotically-free gauge-
theory. This enables one to use a variational method
directly in the weak-coupling regime, which is the in-
teresting region for QCD. In this paper we have demon-
strated the viability of this approach on a simpler problem
which has similar characteristics for weak coupling.

As the first step we decompactify our link variable and
introduce auxiliary fields which guarantee gauge invari-
ance and compactness. The Hartree-Fock wave function-
al of the new noncompact variable depends on a mass pa-
rameter which sets the scale of all correlations. This is a
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dynamically generated mass which vanishes in the weak-
coupling domain with an essential singularity. This non-
perturbative behavior is due to the compactness of the
theory (and of the vacuum), and can therefore be traced
back to the integer field that we use to guarantee com-
pactness. Using a cluster expansion we solve this problem
analytically and numerically for weak couplings. The an-
alytic solution involves further assumptions and turns out
to be different from the numerical answer in the region
where the mass becomes measurable.

After establishing the correct behavior of the dilute-gas
approximation, we turn to a Monte Carlo analysis and
check it in the weak-coupling domain. The results are
very encouraging. We are able to obtain the correct
behavior over the entire domain in which we can check it,
and we can extend the method into the strong-coupling re-
gion as well. We find, as expected, that the dynamically

H. G. EVERTZ AND D. HORN 30

generated mass increases strongly with the coupling.

This method requires large amounts of computer time
because it involves an iteration scheme which is nonlocal
on the lattice. This is an obstacle in the way of its appli-
cation to interesting non-Abelian problems. Hopefully
one can develop further refinements and shortcuts that
will enable one to apply a similar analysis to QCD in the
foreseeable future.
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