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Abstract. Using the SU(2) Higgs system with dy- 
namical scalar matter fields as a model for 
analyzing screening properties of the confining 
potential in gauge theories, we examine the Wilson 
loop W(T, R) and the gauge invariant 2-point function 
G(T, R) by Monte Carlo simulations on a 164 lattice. 
For small values of the hopping parameter x these 
quantities show non-asymptotic area law behavior 
which changes to asymptotic perimeter law behavior 
as x increases. Close to the Higgs phase transition we 
find an indication that both these asymptotic and non- 
asymptotic terms are present simultaneously within 
the lattice at different distances R and T and that the 
breaking of the confining flux tube by matter pair 
production occurs within the lattice. Introducing an 
appropriate ansatz for W(T,R) and G(T,R), res- 
pectively, we determine in this complex situation the 
string tension, the screening energy of the external 
sources, and the order parameter introduced by 
Fredenhagen and Marcu. 

1 Introduction 

Gluonic fields lead to a confining potential between 
two heavy external quarks which increases forever 
wi th  increasing distance [1-4].  However, in the 
presence of dynamical quarks, pair creation leads to a 
screening of the external charges and to a flattening 
of the potential [4, 5]. The distance R,c where the 
flattening sets in corresponds physically to the 

* Supported by the Deutsches Bundesministerium fiir Forschung 
und Technologic and by the Deutsche Forschungsgemeinschaft 

breaking of the color flux string between the two initial 
quarks and to the formation of hadrons. As this string 
breaking (SB) is a non-perturbative mechanism its 
study in Monte Carlo simulation is of considerable 
interest. It has been already investigated in lattice 
QCD and some simpler models with dynamical 
fermions [6]. However, due to the technical problems 
when including dynamical quarks this mechanism 
has not yet been understood as thoroughly as it 
is necessary in order to analyze the hadronization 
process. 

As dynamical scalar fields in Higgs models are 
technically much easier to handle, it is of considerable 
advantage to study the dynamical screening of the 
gluonic interquark potential in the SU(2) Higgs model 
with the matter fields in the fundamental representa- 
tion. This model is known to be confining 1-4, 5] and, 
therefore, can be expected to have similar screening 
properties as QCD; but allows the possibility of using 
larger lattices and accumulating higher statistics than 
in QCD. 

In addition the study of the confinement in the Higgs 
models [7-19] suggests the use of the following 
additional tool for analyzing the screening mechan- 
isms by dynamical matter fields: In QCD one has 
relied until now mainly on the behavior of the Wilson 
and Polyakov loops in order to analyze the flattening 
of the potential due to the screening by dynamical  
quarks. In Higgs models one has realized that the 
gauge invariant 2-point function of the matter fields 
is also sensitive to the dynamical screening properties 
of those fields and therefore is very useful for 
constructing order parameters [7] which differentiate 
between the free charge and the confinement/screening 
phase in such models. We point out in this paper that 
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G(T, R) is suitable also for the analysis of the SB and 
therefore deserves more attention in lattice QCD. 

There is the following basic problem associated with 
an attempt to analyze the flattening of the potential 
and the corresponding screening length Rs~ on a finite 
lattice of a given length L, e.g. L = 16 as in our case: 
The screening length can only be seen if it is smaller 
than L/2. However, Rsc is quite different in different 
parts of the phase diagram of the SU(2) Higgs model. 
For L = 16 it is considerably larger than L/2 in the 
confinement region and much smaller than L/2 in the 
Higgs or screening region. This property is related to 
the physical reason that the scalar "quarks" are rather 
heavy in the confinement region but become light in 
the screening region. On a lattice with L = 16 the onset 
of the screening, i.e. the string breaking, becomes 
visible around the Higgs phase transition line. It is 
here that the change from the area law to the perimeter 
law behavior of the Wilson loop can be observed. 

Previously [10, I1,14, 15] we have analyzed this 
transition in terms of a static potential parametrized 
by the string tension a as the coefficient of the linear 
part of the confining potential for R < Rs~ and a Debye 
screening mass # which determines the asymptotic 
value 2p of the potential for R > Rsc. In this paper we 
employ a more refined ansatz which takes the area 
law behavior of the Wilson loop and of the 2-point 
function at short distances and their perimeter law 
properties at large distances into account. This form 
not only contains the parameters a and #, but is also 
sensitive to the relative weights of the area and 
perimeter law contributions in the different parts of 
the phase diagram. 

Our Monte Carlo data--which were obtained in the 
different context of our investigating the order of the 
phase transition in the SU(2) Higgs model [24]--  
comprise a large number of points in the phase 
diagram, but the statistics at individual points is rather 
limited. This implies that the nature of our present 
analysis is exploratory and rather qualitative. In 
particular the error analysis suffers from this 
restriction. Nevertheless we think that the results show 
our method to be useful for future high statistics 
investigations of screening effects in Higgs models and 
in QCD. 

The paper is organized as follows: In the next section 
we summarize the theoretical expectations concerning 
the form of the Wilson loop and the 2-point function. 
In Sect. 3 we introduce the ansatz for each quantity 
and describe the specifics of the MC calculations, the 
strategy of the fit procedures and the results. The final 
section contains the conclusions. 

2 Theoretical background 

2.1 SU(2) Higgs model 

The SU(2) Higgs model, which has been analyzed in 
substantial detail in a number of MC simulations, is 

defined by the action 

S(~) = - ~ Z T r ( U e +  U~) 
4 e  

4 

- x Z  Z Re(Vr ~ U x . , ~ x + , )  
x #=1 

x x 2  

Here U~,. and Ue are link and plaquette variables 
respectively, which are in the fundamental representa- 
tion of the SU(2) gauge group. The site variables ~x 
can be represented by ~ = pxax where ex is also in 
the fundamental representation of SU(2) and px is a 
non-negative number, the so-called length of the 
�9 The model has three coupling constants, 
namely the gauge field coupling fl = 4/02, g being the 
usual gauge coupling constant in the continuum 
notation, the "hopping parameter" x and the quartic 
self-coupling 2. For ~c = 0 and K = ~ the squared bare 
mass of the scalar field is + ~ and - ~ ,  respectively. 
Thus for K = 0 the model reduces to the pure SU(2) 
gauge theory with action S(0) (up to a trivial constant). 

The system has only one phase [4,5,19-24], the 
so-called confinement/Higgs phase. Figure 1 shows 
the phase diagram for the fixed 2 = 0.5 (for this 2-value 
the properties of the model are very similar to those 
for 2 = ~ [20,21]). There is a Higgs phase transition 
line with an endpoint inside the phase diagram. The 
region below the phase transition line is called the 
confinement region, because for ~c = 0 one has the pure 
gauge theory which is in a confinement phase. The 
region above the transition line is called the screening 
or Higgs region, because here the static charges are 
screened, similarly as in a Debye-Hiickel plasma [26]. 
Both regions are analytically connected [4, 5, 19-24] 
but--as  MC simulations have shown [14, 19, 21, 27, 28] 
--physical quantities can have quite different 
numerical behavior in the two regions for a given finite 
lattice. This applies especially to the size of the 
screening length Rsr 

2.2 Confinement and screening in gauge 
theories with matter fields 

For pure lattice gauge theories the existence of a 
confinement phase in a certain region of the coupling 
constant space can be demonstrated numerically by 
means of the asymptotic area law decay for large T 
and R of the Wilson loop 

\ \ I E F w  / I  

For the static potential 

V(R) = - lira -lln W(T,R) 
T~oo T 

Fw= ~ T. 

R 

(2) 

(3) 
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between two external gauge charges this means a linear 
increase, V(R)~-aR, for sufficiently large R. For  
example, in the pure SU(2) lattice gauge theory the 
accumulated numerical evidence for this behavior is 
impressive [1-3].  If the gauge fields are coupled to 
matter fields in the fundamental representation, then 
the SB occurs, leading to an asymptotic perimeter 
decay of the Wilson loop (2) even in the confinement 
phase [4, 5]. 

Thus the Wilson loop alone can no longer serve as 
an order parameter to distinguish between phases of 
free or confined gauge charges. However, combining 
the asymptotic properties of the Wilson loop (2) with 
those of the gauge invariant 2-point function 

G(R, T) = TrOt~ tI] Ut Oy , r o= T, 
x ~  

R (4) 

where �9 x denotes the dynamical matter field, one can 
construct new order parameters [6-10] which are 
nonvanishing in a confinement phase and zero in a 
free charge phase. The parameter proposed by 
Fredenhagen and Marcu (FM) [7, 8] is 

PF~ = lim pvM(T, R), R > const, x T, (5) 

where 

G(T, R/2) 
pvM(T, R) = W(T, R) 1/2" (6) 

The parameter PF~ is nonzero in a confinement phase 
and vanishes in a free charge phase [11]. This has 
been demonstrated analytically [6-9] and numerically 
[9-18] for several lattice Higgs models. Determining 
the behavior of both the Wilson loop (2) and of the 
2-point function (4) is, therefore, of considerable 
importance for the analysis of the screening pheno- 
mena. The properties of the screening mechanism in 
different parts of the phase diagram are reflected by the 
behavior of W(T, R) and G(T, R) at different distances 
T and R. The following properties of these observables 
should be valid for fl = 2 - 3, i.e. in the fl-region where 
both the string tension is measurable in pure SU(2) 
lattice gauge theory [2-4]  and where the Higgs phase 
transition is observed [20, 21]. 

2.3 Theoretical expectations for the Wilson loop 

For any x > 0, the Wilson loop W(T,R) decreases 
asymptotically for T, R ~ oo according to the peri- 
meter law [9] 

W(T, R) oc exp ( -- #2(R + T)), (7) 

where # is the energy of fields around one external 
charge. As the model (1) has only one, namely the 
confinement/screening phase [4,5,19-24], this ex- 
ternal charge must be screened by the matter fields. 
Therefore # is called the screening energy. In the Higgs 

region W(T, R) exhibits the behavior (7) at R and T 
larger than 1/mw, the inverse mass of the gauge boson, 
which is substantially smaller than the lattice size 
except close to the Higgs phase transition. 

For small K in the confining region the screening 
energy # is large as it includes the bare mass of the 
dynamical field which diverges at x = 0. In the lowest 
order of the x expansion of W(T, R) one can easily 
derive for 2 = oo in analogy to the calculation in [5], 
that 

2 
# ~-ln . (8) 

K 

A large value of # implies that the perimeter law (7) 
starts to dominate only at some large distances when 
the area law terms in W(T,R) are suppressed (see 
inequality (10) below) and Rsc is very large. At the 
distances smaller than Rsr the Wilson loop is expected 
to be only slightly affected by the matter fields and to 
have qualitatively the same R- and T-dependence as 
in the pure SU(2) gauge theory. This can be seen again 
from the low orders of the x expansion. Thus it is 
appropriate to parametrize W(T, R) in a way similar 
to the pure gauge theory. For  R and T large enough, 
so that the short range (Coulombic) behavior is no 
longer seen, this amounts to the ansatz 

W(T, R) oc exp ( -  aTR - E,x,2(R + T)), (9) 

where a is the string tension and Eex t is the self-energy 
of the (confined) external charge. Comparing the 
expressions (7) and (9) we see that the perimeter decay 
dominates for T and R satisfying roughly 

aTR > (# -- E ,t)2(R + T). (10) 

For  T >> R we obtain an estimate for the screening 
length, R c , at which the area law behavior changes 
into the perimeter law behavior: 

2(# - E~xt) 
R~r . (11) 

O" 

This estimate for Rsc is reasonable only as long as the 
string tension a can be properly defined, which is not 
the case for large x. 

These expectations can be also expressed in terms of 
the static potential V(R), whose short distance 
properties can be taken into account, too. In the Higgs 
region V(R) is of Yukawa type, whereas in the 
confinement region the form of V(R) is quite complex: 
with increasing R the short distance Coulombic form 
changes into a linear form up to R-~ Rsc and then 
turns into a constant at even larger distances. 

For  a given finite lattice size we call the region in 
the coupling parameter space, where the area law 
behavior changes to the perimeter law one at a 
distance smaller than L/2, a "string breaking" or SB 
region. We denote its approximate boundaries by K~ A 
and xe with xe > xA. 
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2.4, Theoretical expectations for the gauge 
invariant 2-point function G( T, R) 

G(T, R) also decreases asymptotically for T, R ~ 0o at 
any x > 0 according to the perimeter law [6-8]  

G(T, R) oc exp(--  #(T + 2R)). (12) 

In the model we are investigating /~ is the same 
screening energy that also determines the perimeter 
decrease of the Wilson loop (7). The asymptotic 
behavior (5) of pFu(T, R) follows from the relations (7) 
and (12). Again taking the hopping parameter 
expansion as a guide, we expect in analogy to (9) the 
following behavior outside the short distance region: 

G(T,R)ocexp(--aTR- E xt(T + 2R)-e~T ). (13) 

The parameter ec is to be interpreted as the sum of 
the bare mass and the self-energy of the confined scalar 
particle. The self-energy is due to the interaction with 
the gauge field and with the scalar field. In analogy 
to (8) one obtains in the lowest order of the x- 
expansion e, = In (2/x) + Eex t. 

For small x, G(T, R) is dominated by the area law 
(13) up to some large but finite distances T and R. 
Only for even larger distances does the perimeter law 
(12) start to dominate: As # and e~ diverge for x ~ 0  
(see (8)), at small r the perimeter law (12) is suppressed 
with respect to the area law (13) by the factor 
e x p ( - # 2 R )  as long as e x p ( - a T R )  is not too small 
for large T and R. Apparently it is difficult to estimate 
the relative importance of the area and perimeter 
contributions, (13) and (12), a priori at finite T and R. 
We shall obtain some information from the analysis of 
our data, however. 

3 Analysis of the string breaking by means 
of the superposition formulae 

3.1 Superposition formulae 

Apart from a traditional analysis of our data for the 
Wilson loops by means of some formula for the static 
potential [10] we have looked for an analytic form 
directly for the Wilson loops. As we want to take into 
account the perimeter law decay and the area law 
decay of W(T,R) simultaneously, we have chosen a 
superposition of two terms with the corresponding 
decay properties. Combining this with a simple ansatz 
for the short distance behavior we arrive at the 
following superposition formula for W( T, R): 

W(T, R) 

= { ff'vexp [ -  #2(W + R)] 

+ I4ZAexp [--  aTR - Eext2(T + R)]} 

x exp[~a(Texp(--mrR)+Rexp(--mrT)) 1 

- We(T, R) + WA(T, R). (14) 

The first term is the perimeter law term which is 
dominant for large distances, and the second one is the 
area law term which might dominante at intermediate 
distances. The common Yukawa potential factor 
represents the short distance properties of W(T, R). As 
the perimeter and area law terms are symmetric with 
respect to an interchange of T and R, and as both 
variables T and R are equally important, we have 
symmetrized also the short distance part. The list of 
the 7 parameters defining this formula is: 

/~: screening energy of an external charge for x > xe 
Eext: selfenergy of an external charge for x < x a 
a: string tension for x < xa 
�9 : renormalized fine structure constant 
mr: Yukawa mass 
_if'e: coefficient of the perimeter law term 
WA: coefficient of the area law term. 

We have indicated the standard physical interpreta- 
tion of the parameters #, Eex t and a within the 
corresponding regions. An extension of this interpreta- 
tion to the SB region will be discussed later. The ansatz 
(14) is meant to be valid for W(T, R) for finite T and 
R, and not intended for determining V(R) in the limit 
T ~ or. Such an extrapolation from the data obtained 
on a finite lattice would be too unreliable, as a small 
T-dependence of In W(T, RifT cannot be excluded. 

The symbols 1/R and 1/T denote the lattice 
Coulomb potential. We do not use the complete lattice 
Yukawa potential since it depends on m r and would 
have to be recalculated numerically many times during 
the fits with mr being a free parameter. 

Our ansatz for G(T,R) as a superposition of a 
perimeter (12) and an area (13) law term is analogous 
to that for the Wilson loops. The superpositionformula 
for G(T, R) is 

G(T, R) = {Ge exp [ -  #(T + 2R)] 

+ GAexp [--  aTR -- Eext(T + 2R) - ~cT]} 

x exp [ ~ a R e x p (  - mrT)] 

=- Gv(T, R) + GA(T, R). (15) 

Most parameters appear already in the formula (14) 
for W(T, R). The new parameters are 

ec: bare mass + selfenergy of the constituent particle 
for x < XA 
G_e: coefficient of the perimeter law term 
Ga: coefficient of the area law term. 

The formula (15) reproduces again the expected 
behavior both at asymptotic and at intermediate 
distances. The choice of the short range term has some 
ambiguities [31]. We have kept it as simple as possible. 

3.2 Specifics about the Monte Carlo calculations 

Our data have been obtained during the investigation 
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Fig. 1. The phase diagram of the SU(2) Higgs model at )0 = 0.5. The 
points in the coupling space which we have chosen for the analysis 
cluster around the phase transition line and are represented in this 
figure by large dots. The positions of the phase transition points 
are listed in Table 1 for fl = 2.1, 2.25, 2.4, 2.6 and 3.5. The critical 
end point lies on the dotted line but its exact location is not yet 
known [24] 

of the nature of the Higgs phase transition at 2 = 0.5 
[24]. For this purpose it was necessary to perform the 
calculations at many points (about 80) clustered in a 
narrow interval around the phase transition for several 
different values of ft. These points are indicated in 
Fig. 1. 

The simulations were carried out on the 164 lattice 
by means of a vectorized code on a CYBER 205 
computer using a Metropolis algorithm. While most 
of our runs were performed with a one link update, 
we also performed runs with 3 hits, allowing for 
an improved acceptance rate. We simulated the 
icosahedral finite subgroup of SU(2) which is a very 
good approximation for the couplings we have con- 
sidered [21]. Typically we discarded 10,000 sweeps 
at the beginning, allowing for equilibration, and then 
retained up to 105 sweeps close to the phase transition, 
while far away 10,000-30,000 sweeps were available 
for measurement. The total computer time used was 
about 1000 CPU hours. 

A large number of points allowed us to obtain 
information about the properties of W(T,R) and 
G(T, R) in various regions of the coupling space. At 
individual points the statistics was correspondingly 
limited, however. 

3.3 Strategy of the fit procedures 

We fit W(T, R) and G(T, R) simulateneously. Thus the 
total number of free parameters is 10. Even with some 
necessary cuts for small R and T, the number of data 
points to be fitted, allowed by the restriction T, R < 8 
on our 164 lattice, is about 90. The ratio of the number 
of data points to the number of free parameters is 
therefore quite high. On the other hand, we may expect 

Table 1. Positions of the phase transitions [24] and the boundaries 
of the SB region for 2 = 0.5 

KpT K A Kp 

2.1 0.28675 _ 0.00010 0.284 _ 0.002 0.291 +__ 0.002 
2.25 0.27065 + 0.00005 0.267 + 0.002 0.274 + 0.002 
2.4 0.25900 + 0.00020 0.256 _ 0.002 0.263 _ 0.002 
2.6 0.25060 + 0.00030 0.247 _ 0.002 0.254 _ 0.002 
3.5 0.23650 + 0.00050 - -  

that the data for different R and T are not completely 
statistically independent, as they are obtained from 
the same ensemble of configurations. This may effect 
the errors of the fit parameters. 

The ~(2 function is a quadratic form of the 4 fit 
parameters Wp, Wa, G e and G a. Therefore it is possible 
to determine the minimum with respect to these 4 
quantities analytically. Doing this one gets an 
expression for X 2, which depends only on the re- 
maining 6 parameters, the data and their statistical 
errors. Thus for the actual M I N U I T  procedure a 
tolerable number of 6 free parameters remains. The 
values of the fit parameters are quite stable with respect 
to various changes of the fit procedures and so we 
believe that they are at least semiquantitatively 
reliable. However, the error bars produced by the 
M I N U I T  program sometimes seem to be unrealistic. 
In the case of complex fits by means of the 
superposition formulae the statistics at individual 
points was not sufficient for performing a block 
analysis of the errors. The best estimate of the errors 
can be obtained from the variation of the values of 
the parameters at close x-points. 

The most important result of the superposition fits 
is the determination of the x-values for which both 
perimeter and area law terms in the superposition 
formulae are approximately of the same importance for 
the description of the data. This we take as a signal 
that the system is in the SB region. The relative 
importance of the perimeter and area law terms 
changes with T and R and it is necessary to devise 
some "global" comparison of both terms. There are 
numerous ways to do that, and several methods we 
have tried give consistent results. 

Of course, the fits always produce some values of 
the parameters for the perimeter and area terms even 
in the cases when these terms are unimportant, i.e. for 
x < x a and x > x e. These values of the parameters are 
not to be believed. The reason is that the non-dominant 
terms must be expected to simulate systematic 
uncertainties in the ansatz for the dominant term, 
which are unknown. On the other hand, we expect 
that the physical interpretation of various parameters 
outside the SB region can be extended into the SB 
region. 

3.4 Results 

The formulae describe the data in the SB region very 
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Fig. 2. Data for W(T,R) and G(T,R) for f l=2.4  fitted by the 
superposition formulae (14) and (15) in the SB region. The open 
symbols denote the data which were exluded from the fit procedure 
by the choice of the cuts. Different lines correspond to different R. 
The upper line corresponds to R = 1 for a W(T, R) and R = 0 for 
G(T, R), etc. 
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Fig. 3. Comparison of the relative importance of the perimeter and 
area law terms in (14) and (15) in the SB region. Only the R, T 
points included in the fits are shown. Different lines correspond to 
different R. The upper line coresponds to R = 1 for W(T, R) and 
R = 2 for G(T, R), etc. - - :  We(T, R), Gp(T , R); . . . .  : WA(T, R), 
GA(T, R) 

well. An example is shown in Fig. 2. For fl = 2.1, 2.25, 
2.4 and 2.6 we have been able to determine the bound- 
aries of the SB region on a 164 lattice. This has been 
achieved by using several methods of comparison of 
the relative importance of the terms Wp(T,R) and 
WA(T, R) in (14), and Gp(T, R) and GA(T, R) in (15) for 
the description of the data. The resulting values of/s 
and Kp are given in Table 1. An illustration of the 
equal importance of both terms for a good description 
of the data in the SB region is illustrated in Fig. 3. 

The SB region forms a very narrow strip with the 
width of about 0.007 in t<, the Higgs phase transition 
at x = XpT being approximately in the middle of this 
strip. Below the SB region it is not possible to 
determine the asymptotic properties of W(T,R) and 
G(T, R) whereas this is easy to do so above the SB 
region. The superposition formulae allow us also to 
extract at least semi-quantitative values of the 
parameters a ,  Eex t and # from the data in the SB region 

determining both the perimeter and the area law 
behavior of these observables. 

The results of the superposition fits for the ratios 
WA/Wp and GA/G P are shown in Fig. 4. Three of the 
parameters with a physical interpretation, namely a, 
Eex ,, and # are displayed in Fig. 5. In this figure we 
have shadowed for each of the parameters that 
x-region in which the values of the parameter have 
been obtained from the smaller of the two terms in 
the superposition formulae. The smaller terms might 
be strongly influenced by theoretical uncertainties of 
the ansatz and the values of their parameters are 
spurious. Therefore we dttribute no physical signi- 
ficance to the values of the parameters in the shadowed 
regions and show them only for completeness. 

The most remarkable aspect of the Figs. 4 and 5 is 
that the ratios of the coefficients of the area and 
perimeter terms change strongly when passing through 
the SB region, whereas the values of the three 
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parameters displayed change only moderately. Also 
the values of the parameter e~ are ~-independent, being 
approximately e~_ 1.5 for all ]?-values. Thus the 
change of the relative importance of both terms in the 
superposition formulae is mainly due to the change of 
the coefficients without much change of the physical 
parameters. 

The values of ~ determined at fl--2.4 and 2.6 by 
means of the superposition formulae are quite 
r-independent and therefore we just give their values 

= 0.2 _+ 0,02 (fl = 2.4)and 0r = 0.19 _+ 0.01(fl = 2.6)(for 
fl = 2.1 and 2.25 a reliable determination of ~-values 
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from our data was not possible). A determination of 
the Yukawa mass from W ( T , R )  and G(T ,R )  turned 
out to be very unprecise. 

3.5 Order  parameter  f o r  conf inement  

The close relationship between the perimeter laws 
for G(T ,R)  and W ( T , R )  in confining theories with 
dynamical matter was a motivation for the construction 
of certain "order parameters" distinguishing between 
confinement and free charge phases of various models. 
The parameter proposed by Fredenhagen and Marcu 
[7, 8] is defined in (5) and (6). The parameter PF~M is 
nonzero in a confinement phase and vanishes in a free 
charge phase [11]. Therefore pF~M should be nonzero 
in our model for any x > 0. 

From our previous discussion of the behavior of 
W ( T , R )  and G( T ,R )  at finite distances we conclude 
that the asymptotic value Pv~ cannot be determined 
on a finite lattice below the SB region. The SB occurs 
at distances which are larger than our lattice. The 
virtue of our analysis is that we have been able to 
determine the boundary xA of this region in the 
coupling space rather precisely (see Table 1). 

Both above the SB and in the SB region the 
extraction of the asymptotic behavior of the function 
PFM from the data should be possible. In the SB region 
this requires some assumption for its non-asymptotic 
form for which we use here the superposition formula. 
It provides the following analytic expression for PF~M: 

G 
- (16) P F M  1,~1/2  " , ,p  

The values of PF~ are displayed in Fig. 6. They 
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Fig. 6. The asymptotic values P~M of PFM( T' R) calculated by means 
of (16). The values in the shaded part are not trustworthy because 
W(T, R) and G(T, R) are not asymptotic below the SB region 

represent an extension of our previous results obtained 
only for fl = 2.4 [11], where we have used the ansatz 

PVM = PF~ + B exp (-- CP), (17) 

P = T + 2R being the perimeter of G(T, R), The values 
of PF~ obtained by the two methods are consistent 
both in the SB region and above it. This is an idication 
that those values can be trusted and one really sees 
the asymptotic property of the function pFM(T, R). 

For completeness in Fig. 6 we also display the values 
of the parameters below the SB region. It should be 
clear, however, that they do not represent the true 
asymptotic values of the function pFM(T, R). Therefore 
the corresponding x-region is shaded. 

4 Summary and conclusions 

Our investigation of the SB region by means of the 
superposition formula contributes to the study of the 
hadronisation in gauge theories with dynamical matter 
fields. 

As the numerical simulation of scalar matter fields 
is much simpler than that of dynamical fermions, the 
observation and the study of the string breaking in 
the lattice Higgs models is able to provide helpful 
clues for the analysis of the corresponding data in 
lattice QCD I-6]. In particular, the gauge invariant 
2-point function G(T ,R)  seems to be similarly useful 
as the Wilson loop W(T, R). 

The investigation of the complex phenomenon of 
string breaking requires the study of gauge theories 
with dynamical matter on several different character- 
istic length scales simultaneously. Our experience with 
the superposition formula indicates that such a study 
begins to be possible, at least qualitatively, already on 
a hypercubic lattice of the size L = 16. But it is clear 
that reliable quantitative results will require the use 
of even larger lattices and enormous statistical efforts. 

Analyzing the data for the Wilson loop W(T,  R)  and 
the gauge invariant 2-point function G( T , R)  in the 
SU(2) Higgs model with a doublet scalar field on an 
L 4 lattice with L = 16, we have localized the SB (string 
breaking) region, x A < x < x e, where both the non- 
asymptotic area law and the asymptotic perimeter 
law behaviors are observed on the  lattice simul- 
taneously at intermediate and large distances, 
respectively. Here the breaking of the confining flux 
tube is seen. We have determined the approximate 
positions of the boundaries XA and xe (>  XA) for 2 = 0.5 
and 2.1 < fl < 2.6 (Table 1). The Higgs phase transition 
lies between these boundaries, i.e. in the SB region. 

Because of the complex physical process of the string 
breaking, the SB region requires an elaborate analysis 
which we have performed using a superposition of 
the area and perimeter terms for W(T,  R)  and G(T, R). 
This allows us to distinguish the non-asymptotic 
and asymptotic properties of these functions and to 
determine the values of some observables which 
characterize their behavior at different scales. 



O n e  of these obse rvab les  is the s t r ing  t ens ion  tr. I t  
decreases s l ightly in  the  SB reg ion  w h e n  x increases  
above  x A b u t  r e ma i n s  finite even  at  x = x  e. A n  
i n t e r p r e t a t i o n  of  this b e h a v i o r  is poss ib le  if one  
identif ies tr wi th  the s lope of  the l inear  pa r t  in  the 
stat ic  po ten t ia l .  As the ex tens ion  l of  this l inear  pa r t  
decreases wi th  inc reas ing  x m o n o t o n i c a l l y ,  we can  
cons ide r  tr as a f unc t i on  of I ins tead  of  x. O u r  resul ts  
suggest  tha t  tr does n o t  van i sh  as l ~ 0  in the  SU(2) 
Higgs model .  This  m e a n s  tha t  the a rea  law b e h a v i o r  
of  W(T,R) a n d  G(T,R) at  i n t e rmed ia t e  d i s tances  
d i sappears  because  the  R- a n d  T- in t e rva l  of its va l id i ty  
sh r inks  to zero  n e a r  x e a n d  n o t  because  the  s t r ing  
t ens ion  vanishes  at  xe. A s imi lar  ques t i on  c ou ld  be 
asked  also in  lat t ice Q C D .  

A n o t h e r  in te res t ing  obse rvab le  is the o rde r  
p a r a m e t e r  PF~, which  c an  be o b t a i n e d  f rom the  
a s y m p t o t i c  b e h a v i o r  of W(T, R) a n d  G(T, R) by  m e a n s  
of  the supe rpos i t i o n  fits. I ts  values  can  be d e t e r m i n e d  
n o t  on ly  above  b u t  also in  the SB region.  
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