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We study the order of the Higgs phase transition in the SU(2) Higgs model at several values of the
gauge coupling B for bare quartic coupling A=0.5 using Monte Carlo simulations. We determine
the internal energy of metastable states on various lattice sizes and estimate that the transition ter-
minates at the critical point located at 1.95 <8, <2.25. We also apply a recently proposed multihis-
togram method in our data analysis. At 8=2.25 and B=2.4 our data strongly indicate the presence
of a first-order phase transition. For 8> 2.6 we find no indication of a discontinuity in the internal
energy on lattices up to size 16* and the transition is either weakly first order or of higher order.

1. INTRODUCTION

The Glashow-Weinberg-Salam (GWS) gauge theory of
electroweak interactions assumes the presence of the
Higgs mechanism for its successful description of many
phenomena. The latter is responsible for the generation
of vector-boson masses, due to the coupling of the gauge
fields to the self-interacting scalar fields. The Higgs sec-
tor of the theory (coupled gauge and scalar fields without
fermions) is, however, not yet completely understood.
One important open question is—Does a nontrivial field
theory exist in the infinite-cutoff limit? Also, the nonper-
turbative effects of a phenomenologically allowed strong
self-coupling of the scalar field should be studied. There-
fore various Higgs models have been investigated in re-
cent years by means of nonperturbative Monte Carlo
simulations on the lattice. For a review and a list of
references on lattice Higgs models see Ref. 1. This ap-
proach requires understanding the continuum limit of the
lattice Higgs models; i.e., one has to find a suitable criti-
cal point. At such a point the system flows to a fixed
point in the sense of the renormalization group and the
limit of vanishing lattice constant can be performed.

One possible scenario is that the continuum limit
relevant for the GWS theory is approached in the vicinity
of the Gaussian fixed point of the scalar theory. It has
been demonstrated then that the inclusion of the gauge
fields cannot change the noninteracting character of the
resulting continuum theory.? An interacting Higgs sec-
tor is possible only if one introduces a finite cutoff, and
the GWS theory is then an effective field theory valid
only at energies lower than the intrinsic scale parameter.
This approach has recently led to the determination of an
upper bound for the Higgs-boson mass.’

Although this scenario is at present acceptable both
from the theoretical and phenomenological points of
view, it is also important to examine the Higgs models for
nontrivial fixed points where a genuine continuum limit
with interacting fields could be possible. It is now nearly
certain that the pure scalar field theory in four dimen-
sions does not have such a nontrivial fixed point, but we
cannot exclude the possibility that the coupled system of
gauge and scalar fields behaves differently. Higgs models
have large manifolds of phase transitions in the space of
couplings and the fixed-point structure has not yet been
reliably determined.
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Motivated by these considerations we have investigated
the nature of the phase transition in the SU(2) Higgs
model with scalar fields in the fundamental representa-
tion. This model corresponds to the Higgs sector of the
GWS theory if the U(1) gauge coupling is neglected. The
model is known to have a two-dimensional sheet of
“Higgs” phase-transition (PT) points in the three-
dimensional space of coupling parameters 3, k, and A
(here B=4/g? is related to the gauge field coupling g, A is
the bare quartic self-coupling, and « is the hopping pa-
rameter of the scalar field). For small A <0.03 and for
B=1.0-3.0 the Higgs PT is distinctly of first order* as
suggested by perturbative calculations.” When A or § in-
crease, the Higgs PT weakens and for the pure scalar field
theory at f= oo the Higgs PT is of second order. It is
possible, however, that the order of the Higgs PT at a
fixed value of A changes at some finite 8 thus implying
the existence of a tricritical line separating a two-
dimensional manifold of critical points from the phase
transitions of first order. For theoretical hints in this
direction see Ref. 6. In the vicinity of a possible tricriti-
cal line one could then hope to construct a nontrivial
continuum limit.

From earlier numerical data® we concluded that
A=0.5 is a good candidate for a search for such an effect.
At this A the first order of the Higgs PT is still observable
for f=2.25 but the Higgs PT is weak enough that one
can expect a possible change of the order with increasing
but still moderate values of 8. Therefore we have fixed A
to this value throughout the paper.

In addition, for large values of A the Higgs PT sheet is
bounded by a line of critical points at small positive
values of . Thus a nontrivial continuum limit might also
be possible there. Although its relevance for the GWS
theory is not obvious, such a continuum limit might be of
fundamental field-theoretical interest. The localization of
these end points is also interesting from the point of view
of recently performed investigations of the SU(2) Higgs
model coupled to fermions.” There it is desirable to com-
pare the positions of the Higgs and the chiral phase tran-
sitions in order to find out whether they coincide.

The scenarios for continuum limits just described
might be unlikely. However, their possible impact on the
GWS theory nevertheless justifies their careful examina-
tion. We face very difficult problems when using the
standard Monte Carlo simulation for this purpose be-
cause it is very difficult to distinguish weakly first-order
phase transitions from second-order ones on a finite lat-
tice. Previous studies have encountered such problems in
the localization of critical points and/or tricritical points
in spin systems® and lattice gauge theories.’ At present
we hope to gain better knowledge of the various proper-
ties of the Higgs PT and to localize regions in the cou-
pling space where further investigations, e.g., using the
Monte Carlo renormalization-group (MCRG) technique
would be most promising.

II. BACKGROUND

A. The model

The lattice regularized action for the SU(2) Higgs mod-
el is given by the expression
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Here U, , are link variables of the gauge field in the fun-
damental representation of the SU(2) gauge group and
Up are their products along the lattice plaquettes. The
site variables of the scalar field ®, are written in the form
®, =p,0, where o, €SU(2) is in the fundamental repre-
sentation, too, and p, is the length of the scalar field.
The first term describes the pure gauge field interaction;
the second one the interaction between the scalar and the
gauge fields and the last one the self-interaction of the
scalar fields. The model has the coupling constants
B=4/g? with g being the gauge coupling constant, « the
hopping parameter, and A the bare quartic self-coupling,
which is fixed to the value 0.5 throughout this paper.
The system has only one phase: the confinement-Higgs
phase. There is a Higgs PT line separating the
confinement region below the phase transition (smaller
values of k) from the region above, which is the Higgs re-
gion. The line extends from B8= o [where the model
reduces to the pure O(4)-symmetric ®* theory] to small
values of B, but has a critical end point at some finite B
(Refs. 4 and 10).

B. Details of simulation

The simulations were carried out on Cyber 205 vector
computers using the Metropolis algorithm on L* hyper-
cubic lattices with periodic boundary conditions. While
most of our runs were performed with a one-link update,
we also performed runs with three hits for larger values
of B (B=2.6) thus achieving an increased acceptance
rate. In order to minimize the working space require-
ments we simulated the icosahedral finite subgroup of
SU(2) which is a very good approximation to SU(2) for
the values of the couplings we have considered.* A fully
vectorized code for the updating using a checkerboard
decomposition of L* lattices, was implemented. We used
two different random-number generators: one based on
the congruent modulus method!! and second a shift regis-
ter random-number generator. No systematic difference
in our results was observed. Typically we discarded 10*
sweeps at the beginning, allowing for equilibration. Rela-
tively far (in the  direction) from the phase transition 10*
sweeps were kept for measurements; close to the Higgs
PT we performed up to 10° sweeps even on our largest
lattice. We considered lattices ranging in size from 4* to
16* and performed our simulation at many values of the
couplings using a total of about 10° h supercomputer
time.

C. Finite-size effects

Phase transitions are extensively studied in the frame-
work of statistical mechanics. The properties of the
internal energy determine the nature of the phase transi-
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tions. The internal energy develops a gap at a first-order
phase transition in the infinite-volume limit, while at a
second-order phase transition the internal energy is con-
tinuous, but its derivative with respect to its couplings
becomes infinite. Performing numerical simulations on a
finite lattice poses the problem of extrapolating finite-
volume data in order to determine infinite-volume prop-
erties of the internal energy.

In our model we concentrated on the hopping term,
which is the interaction term of the scalar and gauge
fields

1

1
E=—
8 L*

4
S 3 Re(trd U, @, ). )
x pu=1

Its expectation value ( E ) is the part of the internal ener-
gy contained in the hopping term of the action. This
choice is motivated by our earlier* observation, that the
operator (2) most clearly exhibits the critical behavior at
the Higgs PT.

Various methods can be devised in order to study
phase transitions in different situations. At a strong first-
order phase transition one can study the appearance of
long-living metastable states in the computer time se-
quence of generated E values E;, which manifest them-
selves as double-peak structures in the distribution func-
tion N(E) of E;. It is straightforward to estimate the gap
in the internal energy

AE=E,—E_ 3)

by locating the maxima E |, and E_ in the distribution
function N (E) on each lattice and at values of couplings
where the two metastable states are equally probable.
For a strong first-order phase transition one finds a gap
which is insensitive to a variation of the lattice size, mak-
ing the determination of the first-order nature of the
phase transition with numerical methods relatively easy.
We emphasize that on a finite lattice the internal energy
(E) is a continuous function of the coupling constants
although metastable states are present in the system.
This becomes apparent numerically when the statistics of
the simulation is high enough (rounding effect). It is only
in the infinite-volume limit, when the Monte Carlo life-
time of the metastable states becomes infinite, that the
internal energy develops a discontinuity.

The situation, however, becomes much more compli-
cated if the transition is either of weak first order or of
second order, but close to a first-order line. Here the lo-
cations of possible double peaks E, and E_ and the gap
size AE become functions of the lattice size and even a
large gap on a small lattice can decrease to a small value
if one increases the lattice size. It is then naturally very
hard to decide from a numerical simulation what its
value is in the infinite-volume limit. It may even happen
that a double-peak distribution function N (E) on a finite
lattice approaches a Gaussian form in the thermodynam-
ic limit and the phase transition is actually of second or-
der. Such phenomena can be observed in the vicinity of
tricritical points and critical points.

In our simulation we monitored the computer time
evolution of values E; calculated in single configurations
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separated by 10 sweeps. Typically the statistics at the
phase transition points was large enough to allow a few
phase flips or fluctuations of the system, even on larger
lattices. We then determined the distribution function
N (E) by binning the obtained values of E; into 50 bins
and determined E, and E_ from the location of the
maxima, if they were present.

We also tried to refine this approach by replacing the
sequence of values E; by a sequence of smoothed values
E?. We calculated the averages of E; values in blocks
with length N and with the center at j,

1

Er=
Nst1l ), _iSnen

J

E;, (4)

and determined the corresponding distribution functions
N*(E*). This approach is motivated by the idea that one
should be able to eliminate fluctuations on short scales in
computer time but still preserve the dynamics of the
phase flips. This is especially useful if the fluctuations in
each metastable state are not much smaller than the gap
size itself. The distribution function N*(E*) of the
smoothed E values can then reveal the locations E , and
E _ of the internal energy maxima in a much better way
than N (E).

The second moment of the distribution function—the
specific heat—measures the fluctuations of the internal
energy around its average value

C=3,(E)=8L*((E—(E))) . (5)

Its finite-size scaling analysis has been the standard tool
for the study of second-order phase transitions.!? In par-
ticular one can determine C as a function of x (x plays
the role of the inverse temperature for fixed values of A
and ) and then study its maximal values C,,, as a func-
tion of the lattice size L. The divergence of the specific
heat with L is described by the scaling law

Crax <L (6)

max

for very large lattices with critical exponents a and v.
We note that C_, diverges even at a first-order phase
transition: the fluctuations between the metastable states
dominate the fluctuations of the internal energy and the
specific heat diverges with the volume of the system,'
i.e., Cpax ©L* in our case. We determined the specific
heat by means of the second expression in Eq. (5) and its
error was determined by blocking the data for C into few
blocks of typical length 1000-5000 sweeps. Those entries
were then treated as independent measurements.

We also considered the modified fourth cumulant V;
defined by

p=1——E (7)
L 3(E*)2
This quantity behaves quite differently at first- and
second-order phase transitions. At a second-order phase
transition its value in the thermodynamic limit is %
(reflecting the fact that the corresponding distribution
functions approach Gaussian forms), this value is more-
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over independent of the temperature. For a first-order
phase transition, however, ¥, will have a value smaller
than £ on the phase transition point in the thermodynam-
ic limit. This property and the finite-size dependence of
V; has been successfully used in statistical mechanics
models to study the order of phase transitions.'>!*

D. Multihistogram method

It is very difficult in numerical simulations to reliably
determine, e.g., the maximum of the specific heat C,, on
a given lattice because the precise location of the PT is
usually not known. While one can obtain a reasonable es-
timate by performing a large number of MC runs in the
close vicinity of the PT (in our model we chose a set of
with y=1,..., N at fixed ), the problem of principle
remains: it is most likely that the MC simulation misses
the finite-volume phase-transition point.

Recently Ferrenberg and Swendsen (FS) proposed a
method which allows an analytic continuation of thermo-
dynamic quantities, e.g., the specific heat, in the critical
region of the model.'"> Making use of the analytic form of
the partition function, and combining the measured dis-
tribution functions N, (E) as determined in the MC simu-
lation at couplings k., the probability distribution func-
tion P (E,«) is determined by means of the equation

N
4
_]N),(E)exp(SKL E)
P(E,k)=—~ : (8)
S n,exp(8x,L*E —F,)

y=1
Here is n, the total number of entries into the (unnor-
malized) histogram at «, and independent MC measure-
ments are assumed. The set of free energies F, with

v=1,...,N can be determined self-consistently by Eq.
(8) and

exp(F,)= 3 P(E,k,) . 9)
E

The specific heat can then be calculated by means of

C(k)=8L*3 P(E,k)(E*—(E)?) . (10)
E

Analogous formulas hold for the mean of the internal en-
ergy (E ) and the modified fourth cumulant ¥, . An esti-
mate of the errors can be obtained by applying the mul-
tihistogram method for different subsets of «, values.

ITI. RESULTS AND DISCUSSION

We studied the model (1) for A=0.5 at values f=1.95,
2.1, 2.25, 2.4, 2.6, and 3.5 varying the hopping parameter
k. Figure 1 shows (E) on the 16* lattice in the vicinity
of the Higgs PT. In the cases of 5=2.1 and 2.25 we ob-
serve a rapid variation of { E ) as we cross the phase tran-
sition whereas for the larger B values and also for
B=1.95 the curves are much smoother. We expect that
at B=2.4, 2.6, and 3.5, in spite of this smoothness, the
Higgs PT is present, as this transition is believed to con-
tinue to f=o. At B=1.95, however, the data indicate
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FIG. 1. The internal energy (E) as a function of x on 16*
lattices for various values of 5.

the absence of a phase transition; one can only see a
rounded, nondivergent specific-heat peak at k=0.305(1).

We determined the positions of the Higgs PT on the
16* lattice from the distribution functions N(E). At
B=2.1, 2.25, and 2.4 double peaks are present and it is
possible to determine the metastability region. Its width
allows us to estimate the error of the position of the
Higgs PT points. At 3=2.6 and 3.5 we did not observe
metastability on our lattices and we therefore determined
the location of the phase transition from the location of
the peak of the specific heat. The phase-transition points,
determined on the 16* lattice, are listed in Table I. In
Fig. 2 we draw the corresponding phase-transition line in
the -« plane.

It is already clear from Fig. 1 that the Higgs PT at

0.3 ——— T — T T
K‘ .
0.30F X=0.5 .
1~16
0.28| \ -
0.26 \, Higgs region -
0.24 |
+ confinement region

0.22} Y= xelf=m

1 PR B . B T S 1

2 2.5 3 ﬁ 3.5

FIG. 2. The phase diagram of the SU(2) Higgs model at
A=0.5 on 16* lattices. The positions of the phase-transition
points are listed in Table I. We indicate the transition point at
B= oo [scalar O(4) theory]. The solid line ends at the most
probable position of the critical point and the dashed line
reflects the possible continuation allowed by the errors.
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TABLE 1. Positions of the Higgs phase-transition points
determined on the 16* lattice. At B=1.95 the position of the
specific-heat peak is indicated by an asterisk.

B Kpt
1.95 0.305(1)*
2.1 0.286 75(10)
2.25 0.270 65(5)
24 0.259 00(20)
2.6 0.250 60(30)
3.5 0.236 50(50)

A=0.5 is not a strong first-order phase transition any-
where. At some of the considered 3 values we neverthe-
less detected metastability phenomena with small gaps
AE depending on the lattice size. Here we present an
analysis of these gaps for various 3 and lattice sizes. The
results are collected in Table II.

For B=2.25 we display in Fig. 3 a sequence of distribu-
tion functions N (E) obtained on lattices L =6, 8, 12, and
16. The k values are always chosen such that the
double-peak structure in N(E) is approximately sym-
metric. On larger lattices a clear double-peak structure
due to metastable states is seen, becoming more pro-
nounced as the lattice size increases. For the 6* lattice
the distribution N(E) is dome shaped without pro-
nounced peaks. Here we tried the smoothing technique
which was described in Sec. II C. The utility of this ap-
proach is demonstrated in Fig. 4 where we display the
distribution N*(E*) of the smoothed values E* for
smoothing length Ng=50. Double peaks become clearly
visible. We determined E , and E _ from the positions of
the maxima of the cubic spline interpolation curves, also

NE) T T T
800 8 =2.25
« =0.27060 —
L =8
600 Iy B
400 |
200 M
] |
0.4 05 [ 0.6
T T
N(ED p=225
x =0.2706 |
300 L =16
200 .
100 —
| !
0.4 0.5 [ 0.6

FIG. 3. A sequence of distribution functions N(E) at
B=2.25 on lattices of size L =6, 8, 12, and 16. The curves are
cubic spline interpolations. The vertical solid lines plotted for
the 8* lattice illustrate the error estimates of E and E _.

shown in Figs. 3 and 4. The errors were estimated as fol-
lows. For runs with very high statistics the data were di-
vided into several computer time bins and E, and E _
were determined for each bin from the position of the
maxima of the spline interpolation functions to N(E) or
N*(E*). The errors were calculated from the scattering
of the positions of the maxima. We found that the error
corresponds approximately to the width of the peaks as
95% of the maximal height. This error estimate was
adopted also for runs with a smaller statistics, when a bin

TABLE II. Positions E, and E _ of metastable states and AE depending on 3, k, and L. Values of the gap marked with an aster-

isk have been obtained with the smoothing technique.

B L K E_ E. AE=E,—E_
2.1 4 0.283 50 0.420+0.015 0.580+0.018 0.160+0.033*
0.28400 0.421+0.014 0.593+0.016 0.172+0.030*
6 0.286 50 0.461+0.011 0.604+0.021 0.143+0.032*
0.28700 0.480+0.012 0.620+0.012 0.140+0.024*
8 0.286 50 0.476+0.008 0.585+0.012 0.109+0.020*
0.286 80 0.505+0.009 0.608+0.010 0.103+0.019*
12 0.286 70 0.509+0.009 0.590+0.007 0.081+0.016
0.286 80 0.501+0.008 0.579+0.008 0.078+0.016
16 0.286 77 0.535+0.010 0.590-+0.005 0.055+0.015
0.286 80 0.535+0.010 0.595+0.005 0.060+0.015
2.25 4 0.27000 0.37740.010 0.479+0.008 0.102+0.018*
6 0.27000 0.384+0.006 0.466+0.008 0.082+0.014*
8 0.270 60 0.405+0.010 0.487+0.011 0.082+0.021
0.270 80 0.406+0.004 0.496+0.007 0.090+0.011
12 0.27055 0.418+0.005 0.476+0.006 0.058+0.011
0.27061 0.421+0.006 0.478+0.006 0.057+0.012
16 0.270 60 0.419+0.003 0.483+0.004 0.064+0.007
2.4 8 0.258 70 0.367+0.007 0.397:0.005 0.030+0.012*
16 0.259 00 0.366+0.002 0.393+0.002 0.027+0.004
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FIG. 4. Distribution N*(E*) of the smoothed values E*.
The smoothing length is 50 sweeps.

analysis was not possible (see Fig. 3 for an example of this
procedure). We remark that for different « the values of
E . and E _ are consistent within the errors, as long as
both peaks are seen (see Table II), they are also nearly in-
dependent of a change of the smoothing length Ng. For
some of our distribution functions we also used double
Gaussians and found values of E, and E _ consistent
with the determination described above.

For f=2.1 and L <12 the situation is analogous to
B=2.25 and using distribution functions and the smooth-
ing technique we again found metastable states on lattices
of size L =4, 6, 8, and 12 and determined their positions.
On the 16* lattice we did not find clear double peaks in
histograms even when utilizing the smoothing technique.
The metastable states are only indicated by two shoulders
in N(E), whose positions (the values of E | and E_) can
be determined quite reliably, however. Inspecting the
evolution of E; with computer time we found long and
smooth fluctuations; critical slowing down behavior of
the system was apparent.

The situation for S=2.4 is comparable to that at
B=2.25. We considered only 8* and 16* lattices and ob-
served clear metastable behavior of the system in both
cases. The gaps on both lattices are, within the errors, of
the same size. We note that at B=2.4 the lifetime of the
metastable states is even larger than at 8=2.25 for the
same lattice sizes, in spite of a smaller gap at §=2.4.

At f=1.95, 2.6, and 3.5 we did not find signals for me-
tastability even when using the smoothing technique on
the 124 and 16* lattices. The distribution functions sam-
pled appear to be close to Gaussian. Of course, this does
not exclude the possible existence of slightly separated
metastable states on even larger lattices.

In Fig. 5(a) we summarize our results for the gap AE at
p=2.1, 2.25, and 2.4 on lattices of various sizes. At
B=2.1 we find a rapid decrease of the gap size with in-
creasing lattice size L. The data are not good enough to
perform a quantitative extrapolation of the gap to L = «,
but the impression is that the gap probably vanishes in
the thermodynamic limit. At $=2.25 we find a slowly
decreasing gap size as we increase L. The gap stabilizes,
however, for the largest lattice sizes considered. Here we
conclude that the gap AE will probably survive in the
thermodynamic limit. One can conclude this also from
the distinct double-peak form of the distribution func-
tions on the 12* and 16* lattices, Fig. 3. For B=2.4 the

BOCK, EVERTZ, JERSAK, LANDAU, NEUHAUS, AND XU 41

AE- T T ]
0.2:_. 5 2.1 ]
Fe. =225 ]
Fx: g=2.4 ]
0.1F 3
g x *- 1
oEtb) | . ]
0 0.1 0.2 1
Ep
0.6 B
0.5 |
0.4 ]

FIG. 5. (a) The gap AE as a function of L ~' for several 3. (b)
Metastable states £, and E _. The lines are cubic spline inter-
polations of E _ for all lattice sizes, and of E. (in order to
maintain clarity) only for the 16* lattice.

gap size seems to be rather independent of the lattice size
and we conclude again that the phase transition is prob-
ably of first order. In Fig. 5(b) we plot the internal ener-
gies E, and E _ of the metastable states as functions of B8
for various lattice sizes L. First we note that the location
of the upper state E | , which is associated with the Higgs
region, is rather independent of the lattice size. The
finite-size dependence of the gap size is mainly caused by
the finite-size dependence of the lower state E _ associat-
ed with the confinement region. The curvature of E_ on
the 16* lattice as a function of B is also remarkable,
whereas the £, values lie on a straight line. We finally
note that on the 16* lattice the maximal gap size is at
[=2.25. An interpolation of Fig. 5(b) of E, and E__ on
the 16* lattice using cubic splines indicates that the gap
for the 16* lattice vanishes close to B~2.0. The figure
also suggests that the 3 value at which the gap vanishes
increases with increasing lattice size.

What can we say about the position of the critical
point? With due caution with respect to the uncertainties
associated with an interpolation to the thermodynamic
limit, we conclude from the absence of metastable states
at B=1.95 and from the indicated vanishing of the gap
on the 16* lattice around B=2.0 (or higher), that the crit-
ical point lies above S=1.95. On the other hand, at
B=2.25 the gap seems to persist for large L; therefore,
we expect the end point to lie below this 8 value. As seen
in Table I the crossover at S=1.95 and the Higgs PT
points at 8=2.1 and 2.25 on the 16* lattice lie on an ap-
proximately straight line. Thus we expect that also the
critical point lies on this line, i.e., between the points
(B,k)=(1.95,0.305(1)) and (2.25,0.271(1)). (The
difference in xpr at §=2.25 and the increase of the error
with respect to the values given in Table I reflects a possi-
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ble shift of kpy in the thermodynamic limit.) This locali-
zation of the critical point is considerably more precise
than in earlier estimates,* which suggests its position to
be at some < 1.5. Similar change of the position of the
critical point should be expected also for other A, in par-
ticular for A= o0.

The other question is—Is there a tricritical point at
some finite value of B? Our data in Fig. 5(b) show a rapid
decrease of the gap size with 3 between $=2.25 and
B=2.4, and one may be tempted to estimate the location
of a possible tricritical point at values of B between 2.5
and 2.7. This reasoning however assumes the existence of
a tricritical point at some finite 8= Bcp and a decrease of
the gap size as some power of Brcp—f. This might not
be true and a nonvanishing but exponentially small gap
(~e ~P) might persist up to the largest values of 3 (as in-
dicated by perturbation theory®). As we cannot rule out
this possibility, our claim is that if there is a tricritical
point at some finite coupling, then its most probable posi-
tion is in the region 8=2.5-2.7. One could perform a
search using, e.g., the Monte Carlo renormalization-
group method. We note that for the SU(2) Higgs model
with the scalar fields in the adjoint representation this
method indicates the presence of a tricritical point'® at
similar 3 values.

For completeness we present our results for the finite-
size behavior of the specific heat C and the modified
fourth cumulant V; at values of 8=2.1 and $=2.25 (at
those values of 3 we have the most complete data sets on
various lattices). In Fig. 6(a) we present our data for the
specific heat C, Eq. (5), at B=2.1. The peak of the
specific heat on the 16* lattice turns out to be so narrow

bt v A L
1.5 2 2.5 ]InlL

FIG. 6. (a) The specific heat at =2.1 on 6* and 16* lattices.
The symbols correspond to single MC runs and determinations
of C via Eq. (5). The curves have been obtained with the
Ferrenberg-Swendsen method. (b) Dependence of the maximum
values C,,, of the specific heat on the lattice size (8=2.1 and
B=2.25). The line corresponds to the value a/v=4.
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that its maximum is not hit by the Monte Carlo (MC)
runs. However, the curves corresponding to the deter-
mination of the specific heat with the Ferrenberg-
Swendsen method, Eq. (10), predict a value of the max-
imum of the specific heat C,,. For further illustration
we display in Fig. 6(b) the values of C_,,, as obtained by
the FS method, including an error estimate, as a function
of the lattice size L in logarithmic scales. The divergence
of C,, With increasing volume is nicely observed for
both values of B. At B=2.25, C,,,, increases for large L
according to (6) with a/v close to 4, consistent with the
earlier claim, that at 8=2.25 the Higgs PT is of first or-
der. The linear increase of InC,,, with InL at B=2.1
with a slope different from 4 can be considered as further
indication that the phase transition at B=2.1 is very
close to the critical point.

In Figs. 7(a) and 7(b) we compare the cumulant V;
(determined by the FS method) at 8 values 2.1 and 2.25
on various lattices. While V' increases with increasing

2

lattice size we expect it to approach the value < in the

infinite-volume limit for k away from the phase-transition
point, independent of B. However, for a first-order phase
transition, we expect that its minimum value V,'j“" will
stay smaller than % in the infinite-volume limit on the
infinite-volume phase-transition point. Our data at
B=2.25 in Fig. 7(b) indeed show a slower increase of the
minimum V,‘f’i“ with increasing lattice than at f=2.1 in
Fig. 7(a) (see, e.g., the change of V™" between 12* and 16*
lattices); suggesting a value of V™" smaller than 1 at
B=2.25. The effect is however small, and the properties
of ¥V, alone do not allow a determination of the order of

the phase transitions at the considered B values.

Vit

0.66

0.64

Vit

0.66

0.64 |- -

FIG. 7. The fourth-order cumulant ¥, at $=2.1 (a) and at
B=2.25 (b) as obtained with the FS method.
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IV. CONCLUSIONS

We performed a careful study of the properties of the
Higgs PT at A=0.5 at various values of 8 by varying « in
very fine steps. We conclude from the properties of meta-
stable states observed in the distribution functions N (E),
that for $=2.25 and f=2.4 the Higgs PT is of first or-
der. Here the gap size is practically unaffected by in-
creasing the lattice size whereas for =2.1 a strong de-
crease of the gap size is observable. We found that the
critical end point lies in the interval 1.95 <[3<2.25 and is
probably very close to 8=2.1, i.e., at a value of 8 sub-
stantially larger than suggested by earlier estimates. We
studied also the specific heat and the modified fourth-
order cumulant V; at B=2.1 and B=2.25 and found a
consistent behavior. In the course of our investigation we
applied the recently developed multihistogram method of
Ferrenberg and Swendsen, which considerably improved
our knowledge about the maximum of the specific heat
and the minimum of the cumulant in the critical region.
We were not able to clarify the existence of a possible tri-
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critical point, but assuming that it exists, it seems most
likely to be in the region of 3 values 2.5-2.7. The Monte
Carlo renormalization-group method would seem to offer
more hope for resolving this question than do standard
Monte Carlo simulations.
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