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We present new Monte Carlo cluster algorithms which eliminate critical siowing down in surface models
of the solid-on-solid type. The algorithms are based on reflecting parts of the surface with respect to
appropriately chosen planes. The proper choice of the reflection piane turns out to be crucial.

In the last few years, the development and study of
new algorithms that strongly reduce critical slowing
down (CSD) has become a major research topic in
the field of computer simulations. Our group is pre-
senting within 5 talks at this conference the results
we obtained in this area during the last year:

» Development and study of stochastic cluster
or multi-grid algorithms without CSD or with
strongly reduced CSD for a variety of statistical
models and for lattice gauge theories (this talk
and 1);

o Development of a multigrid method for the
computation of the fermionic determinant in
realistic lattice gauge theories 2.

« Development of stochastic cluster or multigrid
methods that eliminate CSD in the simulation
of quantum gravity on the lattice (dynamical
triangulation algorithms) 3,

In the present contribution, we concentrate on
the application of new cluster algorithms for inter-
face models, which have wide applications in crys-
tal growth, telescope mirror alignement, roughening
transitions, etc. (note that a different approach to
simulating interface models was recently developed
in 4).

Our choice for modeling these physical systems
is to consider them as two-dimensional spin systems
where the spin m, at the site z is an integer (Z-
spin). The action is a general function of the abso-
lute value of the difference of two spins, |m, —m,|.

*Speaker at the conference

The connection to a surface model comes from the
interpretation of 1. as the height of a surface above
the two-dimensional point z. The prototype of such
a model is the discrete Gaussian model, but all SOS
(solid-on-solid) models and variants thereof are in
this class of models®.

An SOS configuration is a two-dimensional sur-
face without overhangs, embedded in three dimen-
sions. The idea underlying our new algorithms is to
take a horizontal plane and reflect “hills” and “val-
leys” of the surface through that plane. One crucial
aspect is the procedure for choosing the reflection
plane.

Let us for definiteness discuss the algorithm in
terms of the discrete Gaussian model, defined by
the partition function

2= exp {"515 3 (. —my)z} e
m <=z y>
We take a square lattice, periodic boundary condi-
tions, and nearest neighbour interaction.
Let us denote the height of the horizontal re-
flection plane by M. A reflection of m, with re-
spect to M means

mg — 2M —m,. {2)

Obviously, M has to be either an integer or a half-
integer. One way of explaining how the clusters are
built is in terms of the embedded Ising variables®
0, = =£1, defined by the decomposition

Mg =0y fmy, — M|+ M. 3)
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g, = 1 means that m, is above the reflection plane
M, o, = —1 that it is below M. Note that o, is
not well defined if m, = M this is not going to
cause difficulties, as can be seen from equation (4)
below.

in order to define the cluster algorithm we in-
troduce the deleting and freezing probabiii!ies7 for
a link <z,y> (in the language of 6 the term “ac-
tivating” is used instead of “freezing”):

Pdcl(zt y) = (4)

q exp{—-;— tm, — Mjimy, — Mi{o:z0, + 1)}

where g < 1 can explicitly depend on jm.— M| and
jmy, — M|, and

Ppreese(z,y) = 1 — Piei(z. 3) - (5

in contrast to other cluster algorithms investigated
in the literature, the possibility of choosing ¢ £ 1
will prove to be useful in our case. Let us how-
ever assume for the moment that ¢ = 1 {until we
explicitly remove this restriction).

After freezing or deleting all the links of the
lattice with the above probabilities, two sites are
defined to be connected if they are at the endpeints
of a frozen fink. The clusters are then defined to be
the connected components of the lattice.

Notice that P,.i(z,y) = 1 if either 0, £ 7y, i.e.
m. and my, are on different sides of the reflection
plane, or if jm.— M| |m, — M| = 0, i.e. at least one
of the points lies on the reflection plane itself. Thus,
similarly to the Ising model, the clusters will contain
only spins for which the embedded Ising variables
have the same value. On the other hand, the spins
with m, = M are always monomers. The most
important difference to the Ising model is however
the strong dependence of the clusters on the choice
of M. Consider for example a situation where M
lies above most of the m... Since Py(z,y) becomes
exponentially small with increasing distance from
M, there will be with high probability one very large
cluster, containing almost all spins.

Flipping a cluster means flipping the embed-
ded Ising variables. In terms of the original integer
variables m,_, this is equivalent to performing the
reflection (2) for all spins in the cluster. Notice
that the cluster boundaries are not in general ex-
actly at the intersection of the relief landscape with
the reflection plane, since Pu.i(z,y) is nonzero also
if both m, and m, are away from and on the same

side of M. Nevertheless, the intuitive picture of
clusters as hills or valleys which are flipped through
the reflection plane is approximately realized.

In our simulations we used the single cluster
algorithms, iLe. a cluster is built starting from a
randomly chosen site (the seed), and it is flipped
with probability one.

In order to establish a valid algorithm one has
to ensure detailed balance. Once M is given, de-
tailed balance follows from standard argumeﬂtsz8
for the restricted set of configurations related by re-
flecting the clusters with respect to M. A sufficient
condition for detailed balance to hold for the entire
procedure is to choose M with an a priori proba-
bility prob{M) that is a function of M itself and
of the objects that are unchanged by the reflection.
re. of the values of i, — M| for all lattice sites:

prob{M) = f(im — M{; M}. (6)

This condition still leaves a jot of freedom in the
choice of M. The proper way to choose the reflec-
tion plane strongly depends on some of the physical
properties of the model, and it will tum out to be
the crucial ingredient in efimmating CSD.

The model (1) is the dual of the two-
dimensional XY model with Villain (heat kernel)
action. For 8 < B. the global Z-symmetry is
spontaneously broken. As a consequence, there
is a nonzero mass gap, and the surface thickness,
which we define as the square root of my._y; ., <
(me—m,)* >, is finite. According to the Kosterkitz-
Thouless (KT) scenario?, the correlation length di-
verges exp ially as § approaches 8.. Inthe SOS
terminology this is due to the fact that the surface
fluctuates more and more. At the critical pomt the
surface becomes rough; for alf 3 > 8. the surface
thickness diverges fogarithmically with the volume
of the system. The large-g phase comresponds to
the spin wave (massless) phase of the XY model.

The first impestant remark about physical prop-
erties of the model that strongly influence our algo-
rithm is that, for all practical purposes, the surface
is thin. We considered systems on a lattice of size
L2 For L = 256, the surface thickness was still fess
than 1 at 8 = .68, which is in the smooth (broken)
phase very close to 8., and =~ 1.4 at # = 1, which
is deep in the massless phase. Both these situations
are well within the region where the critical proper-
ties are clearly exhibited (KT behaviour for 8 < 4.
and massless free field theory for 8 = 1).

For thin surfaces, it is not trivial to choose the
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reflection plane M such that it lies within the ver-
tical bounds of the surface. We tried to ensure this
by taking M close to the value m.  of the spin
at the seed z, of the cluster. The simplest possi-
bility that leads to an ergodic algorithm is 1o take
M = m,, £ 3, each of the two possibilities with
probability 1, and ¢ = 1 (see eq. {4)). Taking
M = m,, is not helpful for g = 1 since all the links
starting from z, would be deleted with probabifity
one. Let us denote the procedure just described as
the H-algorithm (H for half-integer}.

We tested the H-algorithm extensively. in or-
der to make sure that we do observe the slowest
modes of the Markov matrix10, we measured a
whole range of quantities: mean energy and specific
heat, surface thickness, various block spin correla-
tion functions, and the order parameters M, =<
L2, exp{2miam.)] > for a = 0.1, 8.2, ...,
0.5 {M,, is an approximation for the square root of
fimp,_yj0o < exp{2mia{m, — m,)} > which be-
comes exact in the thermodynamic fimit).

For all these guantities we studied the autocor-
relation function and tried to determine the ezpo-
neniial quiocorrelaiion time 7. Note that + should
in principle be the same for all our quantities, since
it only depends on the second largest vigenvalue
of the Markov matrix 10, In practice, there always
were quantities that did not couple well to the siow
modes and exhibited 2 misleadingly small . Some-
times some quantities showed a clear crossover from
one clean exponential regime 1o a slower second
one. In other instances there were guantities that
did not decay at ali exponentially until the limits
of our precision were reached. These difficulties
notwithstanding, we were usually able to reach a
clearcut conclusion with respect to the “true™ value
of 7 because there was a whole set of “slowest de-
caying quantities” which exhibited this value.

The autocorrelation time 7 is always quoted in
“work units” (sweeps). A work unit is the work
necessary to build a cluster of the size of the en-
tire lattice. Each of our runs consisted of between
100000 and 500000 work units.

Determining the errors on 7 is a very delicate
business and we were very careful with this point.
Details of the problems we encountered are dis-
cussed elsewherell.

The results for the autocorrelation times of the
H-algorithm are shown in tables 1 and 2. The al-
gorithm was not successful in eliminating CSD in
either of the two situations.

Table 1: Autocorrelation times for # = 1 {f = x}.

'r: H | IH = QH . QM

(16 135(35) - | - -

32 60(20) | WYy - . -

| 64 . 82(18) | B(1) . 125(15) 265{45)

1128 | 165(33) | 11.5{(1.5) | 13(15} ' 58{12)

T - ¢ T
In the massiess {rough) phase, where the cor-

relation length £ of the model is infinite, the dy-
namical critical exp t - can be defined5818 by
7~ L. The results of table 1 suggest that - is
around 1 at 5 = 1. This is 2n improvement on the
z = I of local algorithms, but it is not what we
expected.

in the broken (. the two val-
ues of 7 shown in table 2 suggest that the al-
gorithm performs even less well than at § = 1.
‘We had problems in determining = here. In prin-
aple, it can be defined by the finite size scaling
law - = £ F(£/L) 10, We tried to estimate £
by analysing the exponential decay of the two-point
function < {m,—m,}* > (appropriate subtractions,
Fourier transforms, etc_, were done in standard fash-
jon). In this phase the particles states are kinks12,
which correspond to one-dimensional (time-zero)
configurations that have an integer value 2 at mi-
nuss infinity and n =1 at plus infinity. With periodic
boundary conditions however, there are only states
containing kink-antikink pairs in the Hilbert space
of the preblem. Thus we tried to determine the
correlation length from properties of two-particle
siates, not one-particle states, and we regard our
values for £ as potentially unreliable (therefore the
symbol = in table 2). Nevertheless, we can only
underestimate £, so our conclusions regarding CSD
in the smooth phase are not spoiled.

The fact that we do not give reliable values for 2
should not disturb us in the case of the H-algorithm.
What we are after are algorithms that (almost)
completely eliminate CSD. Instead of wasting our
time with an algorithni that clearly does not satisfy
this criterion, we should go on to the description of
the more successful algorithms.

A careful analysis of the cluster size distribution
revealed that the H-algorithm produces both small

-L) ‘L




H.G. Evertz ef al. /Surface simulations without critical slowing down 33

Table 2: Autocorrelation times for § < 3.

3. ¢.1 ®H | H|
0.65 =14' 64 12315}, %2)
065 =M 128 - | 3

068 =44 64 - | 82) |
S 068 w44 128 A15(7.0) | 112}
068 461256 - 13(2)

and very large dusters quite frequently, while mter-
mediate size chrsters are comparatively rare. Nearly
half of the work is sper. in clusters lasger than 90%
of the lattice, which, sanilarly to the Ising mode!
studses. do not consaderably change a conhgration.
In view of the above remack that the surface thick-
ness is rather small for afl situations we simulated,
we can readidly inderstand what is going on- the re-
flection plane 3{ often bes above or befow the bulk
of the surface.

A natwral attempt to smprowve the situation s
to mclude reflections with respect to mteger valued
planes M. In order to get clusters of sizes lasger
the seed spin m,, and ¢ = 1), but still assuwre that
the reflection plane hes frequently enough within
the (rather nasrow) vertical bounds of the surface,

e algorithm Q: M = m,__, ie. the the reflec-
tion plane equals the seed spin, bxt ¢ = g, for
the case that Tim, — Mijm, — M| = 0. with

4o some constant strictly smaller than 1, and

q =1 otherwise.

e algorithm E: M = m,_, where g, is 3 ran-
domly chosen lattice site which s different
from the seed z,,, and ¢ = 1 always.

Both these algorithms are nonergodic, since they
only change the spins by even amounts. Therefore
they have to be combined with other procedures.
We studied the combinations TH and QH of the |
and Q algorithms with the H-algorithm.

Notice that for the Q-algorithm, a cluster grown
from the seed z, may contain spins that are above,
below and equal to M. This is a quite unusual
situation in the context of embedded Ising variabk
but is perfectly allowed within the framework for
cluster algorithms that we used here’ .

From the values of + displayed in table 1. one
can conclude that the value of = for the IH algo-
rithm Is very small, possibly even zero, at 8 = 1.
The results for 8 < 3. also suggest a very small
value of = {(but more data are necessary to reach
a definite conclusion; see table 2). Thus the IH
algorithm turned out to be eziremely efficient in
ebminating CSD. Fusthermore, the results in ta-
ble 1 show that there is no significant difference
between the performance of the IH algorithe and
that of the QH algorithm.

Bywwfinrz!mof!l’ienmtbaoﬂn&dﬂ

i {w bir bounds) the autocorre-
lation times did not change significantly. In tables
1 and 2 we only presented the results of runs where
value of ¢, such that the mean chster size ranged
between 2 quarter and 3 third of the kattics (g, was
around 0.7) ded not have a signifcant impact on
the performance of the QH algorithn:

The IH and QH algorthers gencrate comsider-
ably more medwen-size dasters and less lape dos-
ters than the H-algovithm alone. This confews oo
mumummw
10 one of the spis_not at & distance of = away. s

Mmﬂzmdat&:%m%
ever. the good performance of these algorithens s
not 3 fumction of the chuster size distribution allone.,
it & aso sensitive to other detads of the configara-
tion changes that ocan when the various types of
chisters are fhpped.

Let us atvempt an explanation of why the IH
and QH algorithms work 50 well.

At small 3 the mnportant conbguations consist
of a large flat svface, with 2 few two-dimensiosal
regions that are one unit higher or lower. We
shall call these regions single-step-islands (SS1). In
Hamiltonion (transfer matrix) language, the SSTs
comrespond to the srface b the world Boes
of a kink-antikink paw (remember that the kinks
are the small 3 partice excitations12). As g, & ap-
proached, SSI's become larger, more frequent, and
are more often on top of one another. Thew con-
densation causes the SOS surface roughening at 3,

i we have zn SSI on top of a flat background
of height M, there is a large probability that the |
or Q algorithms reflect it with respect to that back-
ground. Since the original and the reflected con-
figmration have the same Boltzmann weight, the
reflection of the SSI is a kind of microcanonical
move. Such low-energy-cost large-scale changes in
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the configurations are usually vers efficient in de-
creasing the autocorrefation time. YVe believe that
this is the main reason why the cluster flips with
respect to an integer valued reflection plane Af im-
prove the situation so dramatically.
The | and Q algorithms have to be combined
with another algorithm in order to ensure ergodic-
ity. We now ask the question whether, in order to
overcome CSD, it is crucial to combine | or Q with
the H-algorithm. or whether we may also use a lozal
ergodic algorithm. If M is an integer, no large 551z
can be created or destroyed by cluster reflections.
The H-algorithm on the other hand can achieve this
easily,. Of course, a locai algorithm like Metropo-
lis cannot create or destroy any large scale objects.
We may therefore expect that a combination TM or
QM of | or Q with 2 Metropolis procedure will ex-
hibit CSD. The study of the QM algorithm, whose
results are also shown in table 1, dearly shows that
this is indeed what happens. Note that for the QM
algorithm we did one Metropolis sweep for, roughly,
one work unit of the cluster part. The values of 7
quoted in table 1 disregard the contribution of the
Metropolis sweeps to the total amount of work.

We conclude that our picture of the S50's as the
relevant objects for understanding our chuster algo-
rithms is correct, and that it & zbsolutely crudgal
to use both the integer and half-integer reflection
planes. The situation is entirely satisfactory: we
have both devised efficient algonthms and under-
stood the physical reason for this efficency.

Qur algorithms can now be applied to the study
of the roughening transition in a variety of SOS
models. With modifications, they can also be used
for 505 models with restrictions, and for scalar field
theories in two dimenisons like e.g. the Sine-Gordon
model.

ACKNOWLEDGEMENTS

We wish to thank R. Ben-Av, D. Kandel and
G. Mack for valuable discussions. One of us
{MM) gratefully acknowledges several discussions
with A. Sokal. Three of us (HGE, MM, and
KP) have enjoyed the kind hospitality of the Weiz-
mann Institute and the Hebrew University. Support
by the Deutsche Forschungsgemeinschaft is grate-
fully acknowledged by HGE, MH, and KP. This
work was also supported in part by grants No. I-
131-095.07/89 from the German-Israeli Foundation
for Research and Development (GIF), No. 517/89
from the Basic Research Foundation of The Is-

rael Academy of Sciences and Humanities. No. 88-
00144/1 from the United States — israel Binational
Science Foundation {BSF). and 2 grant from the
Minerva Foundation. Last but not least we would
like to express our gratstude to the HLRY in Julich,
where cur computer runs were performed.

REFERENCES
1. Talk by H.G. Evertz at this confersnce.

2. Talks by M. Harmatz and P.G. Lauwers at this
conference.

3. Taik by J. Kinar at this conference.

4. M. Hasenbusch and S. Meyer, Clusier Dpdaie
Acceleration of Interface Roughening i the
3D Ising Model Katserslautern prepant TH-14-
90, {September 1990}.

5. For reviews on SOS type of models see:
L B. Abraham, Surface S$iructures and Phase
Trensiiions — ezact resuiis, i Phase Tran-
stiions and Critical Phenomena Vol. 10, C
Domb and i. L. Lethbowitz editors, {Academsc,
1986);
H. van Beijeren and 1. Nolden, The Bonghening
Transilion, m Topics in Curreni Physics Vol.
43, W. Schommers and P. van Blankenhagen
editors {Springer, 1987).

6. R. H. Swendsen and J. S. Wang, Phys. Rev.
Lett. 58 (1987) 86
R.C. Brower and P. Tamayo, Phys. Rev. Lett.
62 (1989) 1087.

7. D. Kandel, E. Domany and A. Brandt, Phys.
Rev. B40 (1989) 330.

8. See U. Wolff's review in Lattice 89, Capni
1989, N. Cabbibo et al. editors, Nud. Phys. B
{Proc. Suppl.) 17 (1990).

9. J. M. Kosterfitz and D. ). Thouless, J. Phys.
C6 (1973) 1181:

1. M. Kosterlitz, J. Phys. C7 (1974) 1046.

10. A. D. Sokal, Monte Carlo methods in Statis-
tical Mechanics: Foundetions and New Algo-
rithms, Cours de Troisiéme Cycle de la Physique
en Suisse Romande (Lausanne, June 1989), and
Review talk in this conference.

11. H.G. Evertz, M. Hasenbusch, M. Marcu, Klaus
Pinn and $. Solomon, preprint TAUP 1836-90
and DESY 90-126, to appear in Phys. Lett. B.

12. Since the discrete Gaussian model is the large
fugacity limit of the Sine-Gordon model, the
kinks discussed here are nothing but the well
known kinks of the renormalizable phase of that
model.




