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We presest 2 duster algonithm for the N, = I finite temperature SU(2} gauge theory The algorithm
efficiently flips the signs of the Polyakov loops: ergodicity is ensured by combening it with 2 standard local
procedure. The dependence of the autocorrelation time on the ratic between the number of cluster steps
and that of focal steps = mvsng;&ed i detad. At ?J'ae fintte temperature transition, critical siowing downs

= reduced drastically. the dy at entical

e

Finding an efficent simulation algocithm for pure
gauge theores s one of the man chabenges in attice
gauge theories. In this paper we report on = new dis-
ter algorithm for the finste temperature SU{2) pure
geug: theory in 3 = I dimensions, which s defined
by the action

§=-8Y iTel(p. '3

Here U, are 2.2 SU{2) matnices, z s 3 site on an
L*x N, lattice, zpu is 3 Bnk of this [attice, and U{p}
is the product of fink variabies along the boundary of
an dementary plaquette p. Penodic boundary con-
ditions are assumed.

One of the main guiding principles in devising
efficient algorithms is to try to act directly on the
relevant degrees of freedom. At least for small A,
it is accepted by now! that these are the Polyakov
loops P,

PE. :Z%TYHUEH,B' (2)

Here the underlined quantities denote spatial objects
(3 dimensions). and (z.f) is the 3+1 dimensional
notation for a 4-dimensional point.

We attempted to devise cluster algorithms (see
eg. 2,3 4) that significantly speed up the Polyakov
loop pseudodynamics. As the basis for such algo-
rithms we used 2 representation in which the em-

“Speaker at the conference

t z for the combined aigorthm being = ~ 0.5,

bedded Ising rariablesS- 3% are the signs of the
Polyahow loops. The clusters are built using the ef
fective tion for these varables, and “fopped”
by chamging their signs. In order 1o easure exgodic-
ity, the cimsier ppdates have to be supplemented by
c fonal locat up

One way to bave the Polyakov loogs amony the
degrees of freedom m terms of which the model &
written & 1o go o the temporal gruge (“Ae =0}
Kow, in order 1o obtain z soocessfuf algorthm, that
does overcome critical slowing dowm, the embedded
Ising model should not be frestrated? 3- 4 For the
signs of the Polyakoy loops bos . W get an ef-
fective mteraction that & frn d. Furth 3
wee alsc get 2n updesired magnetic feid teror, whose
ﬂudnaﬁngs’gnandstxengtkde?odsmtbeoﬁa
degrees of frosdo,

For the case of N; = 1 an enportant smokhc-
tion occurs: there is po frustration 2nd ro Magnetic
field term. For the fimelike plaguette p that con-
nects the spatial potsts z and 2 ~ 7 (7 5 5 lettice
spacing vector in the spatial j-direction).

1TrU(p) = PoPys + const., 3

where the constant does not depend on the sges of
P, and P..; This comresponds to a ferromagnetic
interaction of the embedded king varisbles, the ef-
fective coupling being 3 P.P;_ 5.
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In this situation our cluster algorithm is defined
as follows. First we delete or freeze the binks z,7
(we use here the terminology of 6). The deletion
probability for a link is

Pa(2,3) = exp {~B (PePes; + PePessl)} - 4)

The freezing probability is 1 — Pa{z, 7). Two sites
are connected if they are at the endpoints of a
frozen link. A cluster is a connected set of sites
(all links from 2 site in the cluster to one outside
iv are deleted). In order to update the configura-
tion we use the single-cluster algorithm3: a cluster
is “grown” around a randomly chosen site {the seed)
and flipped with probability cne. This achieves a fiip
P, — —P, for the Polyakov loops in the cluster.

We supplemented the cluster update with a Jocal
update of all degrees of freedom. For the timelike
links we used the heath bath procedure of 8. Becouse
of the N; = 1 condition, we had to use 2 Metropolis
procedure to update the spatial links.

Although the N; = 1 case is not really the phys-
ically relevant one, we decided to study it in detail
for 2 varety of reasons:

s |t is a test of whether our whole approach for
obtaining a cluster algorithm for the study of the
finite temperature transition is meaningfil ltis
not a priori clear that speeding up the Polyakov
loop updates alone will suffice to overcome crit-
ical slowing down.

o There is little experi of the
autocorrelations i 2 situation where 2 noner-
godic cluster algorithm is combined with an er-
godic local algorithm.

e in the lysi

» At the present stage, any progress at all in clus-
ter algorithms for gauge theories may be rele-
vant.

Even for N, = 1, a careful measurement of the dy-
namical critical exponent 2234 yasa very CPU
intensive study, because we still had to deal with a
3 dimensional SU(2) system and with an a priori
arbitrary mixture of 2 algorithms (cluster and lecal).

We first determined the exact location ci the
phase transition from a standard finite size analysis.
We obtained 3. = 0.8730(2) and critical exponents
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Figure 1: Autocorrelation functions for Poivakov
loops L on a 32° x 1 lattice at the phase transition
with {R=0.18) and without clusters.

compatible w'th those of the three-dimensional lsing
rnodel. We shall not give details of this analysis here,
since, up to the exact location of 5., the resulis are
exactly what we expected.

Let us define one time unit in the Markov chain
we generate during the simulation as one local sweep
followed by n duster flips. In order to deter-
mine z, we go to the critical point and check the
relation’> 2. 3- 4+ o 1.2, where 7 is the exp
tial autocorrelation time {i.e. the slowest mode of
the update procedure)4. We compare runs at differ-
ent values of L for which the ratio R,

[

n {dus;e;suze} i )
of the work performed in the cluster part to that
performed in the local part is constant. Studying the
dependence of 7 on R is also very interesting, since
little s known about the analysis of critical clowing
down for a mixed algorithth. Notice that the himit
R— 0o is the “idealized embedding™ discussed in 4.

For a sufhciently accurate determination of 7,
the runs at 8. were very long, between 30000 and
100000 time units (for the study of the critical prop-
erties alone, much shorter runs suffice, since our

R:=

algorithm is very efficient). We measured a large
number of observables, including space- and time-
like plaquettes, absolute value of the lattice-averaged
Polyakov loop L := |5, Pu| . ete. Ve also

defined and measured mproved observabless , eg.
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Figure 2: Astocorrelation times versus lattice size
for zers, fewr and many duster apdates per sweep
{from autocorreations of Polyakov loops}.

for correlations between Polykov loops. Exponen-
tial autocorrelation times for all observables that did
show slowing down at all wers consistent {there were
no visible autoc fats n spacefike plaquct!es).

We took great care to perform 2 thorough er-
ror anaiysis. We took into account the covanances
of autocorrelations at different time distances. We
checked all results for stabdity with a complete Jack-
knife analyss. We were also careful to verify that the
plots of the autocorrelation functions do show 2 diear
evponential decay — such a check had turned out to
be crucial during a concarrent duster investigation?.

Let us now turn to the description of our resulis
concerning the performance of our algorithm. First
and utmost, the new algonithm spectacularly reduces
critical slowing down. To exemplify this, we compare
in fig.1 two autocorrelation functions for a 3 x 1
lattice at B = 0.8730, one for a purely local update,
the other for R=0.18 (i.e. per local sweep, only 18%
of the lattice sites are changed by cluster updates).
Yet the speed dous! The 64° x 1 lattice
would have been totally unaccessible without cluster
updates.

For two quite different values of R, we performed
mezsuremanis of z (only the L = 64 runs were re-
ally expensive; for of L we also took
other R’s — see below). Within statistical errors, the
relation 7 oc L? was well obeyed, as seen from fig. 2.
We obtained z=2.05(11) for the purely local update

pis tr

Figure 3: Autocorrelation times versus R for kattice
sizes £ = 8.16.32. The curves are fits according to
(6)-

{as expected}, which was drastically redoced by the
miclusion of dusters to z=0.61(8) for B ~ 0.2 and
z=045(8) for R~ 2 ¢

bt s remariable that the valoe of z stabires at
small values of R slready. In order to further stody
the R-dependence of the astocorreiation tme, we
pesiormed addrtionat rums for L = §, 16 and 32
The results are presented in fig. 3. (R} 2t foed L
shows 2 very fast nitial dropoff, eshly e I/ &
g0es 1o 3 constant asympiotic valve T, #5 B—oc.
which comesponds to the “ieaized aigornhm™ of
4. Fig. 3 suggests that B=2 is almost asymptotic
2jready!

in our implementation, CPU time s proportiona!
to (1< R}, and E~ 0.5 wmk be the mosi effective
algorithm (in our case the local past vectonzed com-
pletely; otherwise 2 larger value of B would give op-
timal pesformance).

K is amusing to note that the results of Bg 3
are welf described by

7

where 7. is the autocorrelation time of the ideahzed
(R — oo) algorithm, 74 (=1) may be interpreted
as the autocorrelation time for duster updates of
the effective Ising models, and the small guantity ¢
corresponds to the large autocorrelation time of the
purely local algorithm._
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The smalf values of 7 and of 7, suggest tha"
the cluster update is almost perfect in the space of
the embedded Ising variables, whereas the local up-
date is very good in the space of all other degrees
of freedom (but very bad at flipping the Polyakov
loops).

Thus we have shown, for the first time ever in
the framework of lattice gauge theories, that cluster
updates of the proper physical degrees of freedom
can strongly reduce critical slowing down, even when
they have to be combined with iocal updates for the
other degrees of freedom. A more detailed account
of this investigation will be published elsewhere.
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