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We p ~  a d ~ e ~  algo6thm ~ tk~ .¥~ = ~ f/eite tempe.~t~re SLe~2~ gauge ~eo,r~. T~e a~:go6tl*m 
fl/ps the s/g~s of t ~  P o ~ a h ~  ~ eegoff~ty ~s ee~re~ t~" c.o~b~ing ~t ~ a g a n d ~  

pmc~re~ TEe ~ d t ~  aa~co~e~at/oe t/me oe~ ~ ~do be~-ee~ t ~  n~mber of da~e~ -~-,'T~- 
an~/ t i l l  of k)cae steps ~ i a v ~  ~n ~-'ta~. At Ore "~r~ke tempe~te~re L ' ~ ,  cG*3cai~ ~ dolm~ 
/s m d ~  dmst~l~, t [~ dy~am/c~ cr~ca~ mmooe~ z ~ the  combhe~ a ~ g ~ m  he/~g ; ~ ~£~ 

Fm~/~g a~ u-~demt s/melafio, aigod~m for pure 
gauge ti~em~esis tree ~+ the maim c ~ l ~ e s / ~  ~atfi¢~ 
g ~ g e  ~od~s~  ~ tb/s papec~erepocto~ : ~ d e s -  
ter a ~ g o ~  ~ r  ~e  fir, ke e.~perazer¢ SU(2) pete 
igaug~ themy [e 3 -- ~ d ~  ~ is ¢k-f/m~ 
by fhe a c t ~  

H ~  ~7~a are 2x2 SU(2) ma~ces, z is a s~.,e on an 
Lz~M¢ lattice, z ~  is a rink of'this ~atfice, and/J(p)  
~s the product dr ink  variables along the boumlary of 
an demaentar~ plaquette p. Penod/c boondary co~  

are amumed. 
One of the main guid/ng prindple~ in devis/ng 

efficient algorithms is to try to act directly on the  
relevant degrees of freedom. At least for small J~. 
iz is accepted by now I that these are the Polyakov 
~ps  P_-. 

Here the underlined quantifies denote spatial objec;s 
0 d/mentions), and (~:t)  is the 3+1 dimensional 
notation for a 4-dimensional poLn_t. 

We attempted to devise d~tster a]~m'~km~ (see 
e.g. 2. 3, 4) that significantly speed up the Potyakov 
loop pseudodynamics. As the basis for such algo- 
rithms we used a representation in which the era- 

"Speaker at the conference 

P o ~  E~r~. T i~ ~ nee bd~ es/eg t h  d-  
f e ~ e / ~ r ~ c z i c e  for tl~ese * ~  ~ d  "rmee~ 

/t~, t t~ d~sa~ u~tatos t ~ e  to be ~ I~ 

One ~ w  ~ tie. Pol~dm~ t~otl am~tq[ ttke 
delpmes of f,...am~ ~ temt~ og ~ tr~ ~ is 
wGttet ~ to ~ to t i~  t e m ~  p ~  (~,t~ = e"jL 
~ioe. b~ otrdier to ~rmai~ ~ ~ at~t~Mm.~ t l~ t  
does ot~come cndcat slm~q~ dome, the embedleied 

~ ~ t~t be fmstmtetl2 tL 4. F~t t~  

fettive imemctio~ tkat ~ fntstrate~. F ~  
we als~ get an males/ml ~ G d d  tem~ a~mse 
fl~a~atlng sign a~d sueagtb dlepeads o~ the o ~  

For 1L~e case of ~ = 1 an ~ q , a ~ t  ~ p ~ c ~ -  
t io, oc~ur~ there is ~o fraearation and ~o maipae~ 
~ l d  tenn. For the  t~ae~ke ~ q a e t t e  p tibet am-  
hefts t l~  s ~ g a l  tm/nts _z and ~ -- ~ ( j / s  ~ l e t t ~  
spad ,g  vecto¢ i .  the spatial j -dima/o~).  

t ~ e ( e )  ~ ~ _ ~  ÷ ~ +  (3) 

where the constant does not depend on the ~ n s  of 
Pm and P_=~j. This cmresponds to a ferromagnet/c 
interaction of the embedded [sing variables+ the ef- 

fective coupling being ~ P~P_~-~i- 
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In this situation our cluster algorithm is defined 
as follows. First we delete or freeze the ;inks ~, 
(we use here the terminology of 6). The deletion 

probability for a link is 

") 

The freezing probability is 1 - Pe,z(c_,j). Two sites 

are connected i f  they are at the endpoints of a 

frozen link. A cluster is a connected set of sites 
(all links from a site in the cluster to one outside 
i~ are deleted). In order to update the con6gura- 
tion we use the single-cluster algorithm3: a cluster 

is "grown" around a randomly chosen site (the seed) 

and flipped with probability one. This achieveS a flip 

P= --~ -P=_ for the Polyakov loops in the cluster. 
We supplemented the duster update with a local 

update of all degrees of ~reedom. For the timefike 
links we nsed the heath bath procedure of 8~ Because 

of the ?~T~ = 1 condition, we had to  use a Metropolis 

procedure to update the spatial links. 

Although the J¥~ = I case is not really the phys- 
ically relevant one, we decided to study it in detail 
~or a var~et~ Of reasons:. 

• It is a test of whether our whole approach ]'or 
obtaining a duster algorithm ].or the  study of the 

finite temperatvre transition is meaningful. I t  is 

not a priori clear that speeding up the Polyakov 
loop updates alone will suffice to overcome crit- 
ical slowing down. 

• There is little experience in the analysis of the 
autocorrelat~ons in a situation where a noner- 
godic cluster algorithm is combined with an er- 
godic local algorithm. 

• At the present stage, any progress at all in clus- 
ter algorithms for gauge theories may be rele- 

vant. 

Even for N~ = 1, a careful measurement of  the dy- 
namical critical exponent z 7" 2.3, 4 was a very CPU 

intensive study, because we still had to deal with a 
3 dimensional SU(2) system and with an a priori 
arbitrary mixture of 2 algorithms (cluster and local). 

We firsf determined the exact location cf the 
phase transition from a standard finite size analysis. 
We obtained /~: = 0.8730(2) and critical exponents 
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Figure 1: Autocorrelafion functions for Po~ko~ 
toops L on a 31 "p × I tatt~ce at the phase transition 

compatible ~ t ~  those o~the t h r ~ - d ~ m e n ~ a l  Ising 

model. We sha|t  not ~ v e  d e ~ i ~  of, t h~  a n a ~ s  ~ e .  

s~nce, up to the exact ~.at ion of  ~ ,  the resuks are 

exactly what we expected. 
Let us define one dine unit in the Marimv chain 

we generate during tk~ simulation as one local sweep 
].oflowed by ~ duster f l i l~  In order to deter- 

mine z, we go to the cr~ca! point and check the 
relation7, 2, 3~ 4 ~_ oc L z, where ~ is the ezpem~n- 

autocorrelation time (i.e. the slope.st mode of 
the update procedure) 4. We compare runs at differ- 

ent values of L for which the ratio R, 

R : =  n ~dustersize) 
LS ° ( S )  

of the work performed in the cluster part to that 
performed in the local part is constant. Studying the 

dependence of  ~- on R is also very interesting, since 
little is known about the analysis of critical clowing 
down for a mixed algorithrh. Notice that the limit 
R--* ~ is the "idealized embedding" discussed in 4. 

For a sufficiently accurate determination of r ,  

the  runs at  ~ :  were very long, between 30000 and 

100000 t ime units (for the study of the critical p r o p  

erties alone, much shorter runs suffice, since our 
~lgorithm is very efficient). We measured a large 

number of observables, including space- and time- 
like plaquettes, absolute value of the lattice-averaged 
Polyakov loop L :=  ~ = P =  , etc.. ~Ve a,l~o 

defined and measured irapro~ed obse~ables 3, e.g. 
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for ~oneea~.s be~ee~ Poi~kov loo~_ Ex~me~ 
t~a! a~or re~a f ioe  times ~or ~ observabie~ that d~[ 

deow, s~O~i,g ~ at all m coes~eut (there wer~ 
no ~ b i e  a~ocorrdadons m spao~ke pbque~es). 

We took g~ea~ care to  pmtmrn~ a thorough er- 
ror a m m ~  We took into aco~ut  the cova~am~s 

of  autocorr~ut~s at ddFe~nt thne d'~ance~ We 

checked all t r o l l s  for stab~l~Ly ~ a comple~te .~ack- 

knee a n a ~  We were also careful to  v e ~  that. t_ke 
of the autocorrdado~ foncdons do show a clear 

e~ponendal decay - such a check had t o ~ d  out to  

be crucial during a concunent duster inves~atkm 9. 
Leg us now turn to the description of  om results 

concerning the performance of  Our algorithm. Rrst 

and utmost, the new algorithm spectacularly reduces 
cdt~cal skming down. To exemplify this, we compare 

in fig.1 two autocorrelafion functions for a 32 a x 1 
lattice at _~ = 0.8730, one for a purely local update. 

the other for R = 0.18 (i.e. per local sweep, only 18% 
of the lattice sites are changed by duster updates). 
Yet the speedup is tremendouS. The 043 × 1 lattice 

would have been totally unacces~ble whhout cluster 
updates. 

For two quite different values of i~  we performed 

m=-2surem~.~,~ of z (only the L = 64 runs were re- 
ally expensive; for smaller values of  L we also took 
other R's - see below). Within statistical errors, the 
relation T O~ L z was well obeyed, as seen from fig. 2. 

We obtained z ~ 2.05(11) for the purely local update 

~nchm~o~ O5 ~ to  z- -  0.61{~) i ~  .R ~-- 0'-2 

z=0 .4~S)  ~ '  .R "2-- 2 ! 
k ~ remadml~e tf, m the ~ z ~ at 

t ~  R ~  d t i~  a ~  t~mt. ~ 
pe~orm~ ~ m ~  for L = 8. ~ a ~  3~.: 

g o e s  t o  a constant a m y m ~  vahee ~= as R - - , ~ .  

4 V~. 3 t u g . m s  tha~ R = 2 k a t m ~  ae~m~em~ 

ajteady! 
i~ oor ~ ,  CPU t~me ~s ~ 

to ~ I - R ) .  and R ~ 0 . 5  ~ be tire mo~ e a e t t ~  

#etet~. o~he~e~s~ a hrger ~ah~ ~ R u , o ~  ~ op- 
timal p~fon~nce). 

I t  is amudng to note that the tomtit.* o f  "Gg. 3 
are ~ dtm::fii)~d by 

7" d 
T = T =  ÷ R - ~ :  (6) 

where ,-~ is the autoconelatmn time of the ~ea~ze~ 
(R -~ oo) algorithm, ;-a (~ 1) may be interpreted 

as the autocorrcla6on dine for duster updates or 

the effective I~ng models, and the smaB quan t~  

corres~, oncls to the large autocorrcia6on t~rne o5 the 

p.':rely local algorithm. 
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The sma~ values of ~-d and of ;-~ suggest thzr~ 
the cluster update is almo~ perfect in the space of 
the embedded Ising variables, whereas the Ioca] up- 
date is very good in the space of all other degrees 
of freedom (but very bad at flipping the PoJyakov 
loops). 

Thus we have shown, ~or the first time ever in 
the framework of lattice gauge theories, that cluster 
updates of the proper physical degrees of freedom 
can strongly reduce critical slowing down, even when 
they have to be combined with local updates for the 
other degrees of freedom. A more detaiJed account 
of  this investigation will be published elsewhere. 
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