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We present a cluster algorithm that strongly reduces critical slowing down for the SU(2) gauge
theory on one time slice. The idea that underlies the new algorithm is to perform efficient flips for the
signs of Polyakov loops. Ergodicity is ensured by combining it with a standard local algorithm. We
show how to quantify critical slowing down for such a mixed algorithm. At the finite-temperature
transition, the dynamical critical exponent z is == 0.5, whereas for the purely local algorithm z = 2.

INTRODUCTION

Finding an efficient simulation algorithm for pure
gauge theories is one of the main challenges in the field of
Monte Carlo simulations. In this paper we report on a
new cluster algorithm for the finite-temperature SU(2)
pure gauge theory in 3+1 dimensions [1]. Our method is
based on efficient updates of the signs of the Polyakov
loops, and works in the case of an L3x N, lattice for
N,=1. This is the first time that a cluster method was
successfully applied for a continuous-group gauge model
(the only other case of a successful cluster algorithm for a
gauge theory is in the case of the discrete group Z, [2]).

Although the N, =1 case is not really the physically
relevant one, we decided to study it in detail for a variety
of reasons. First, it is a test of whether our whole ap-
proach for obtaining a cluster algorithm for the study of
the finite-temperature transition is meaningful. It is not a
priori clear that speeding up the Polyakov-loop updates
alone will suffice to overcome critical slowing down. Sec-
ond, there is little experience in the analysis of the auto-
correlations in a situation where a nonergodic cluster al-
gorithm is combined with an ergodic local algorithm.
Last but not least, at the present stage any progress at all
in cluster algorithms for gauge theories may be relevant.

Ultimately, we believe that only an accelerated algo-
rithm will enable us to settle the question of whether the
finite-temperature phase transition is driven by the Po-
lyakov loops or if other phenomena, such as monopole
condensation [3], are relevant in the large-N, regime.

The SU(2) pure gauge theory is defined by the action
(1]

=—BX 3 TrU(p), (1)
P
where U, , are 2x2 SU(2) matrices, x is a site on an
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L3x N, lattice, x,u is a link of this lattice, and U(p) is the
product of link variables along the boundary of an elemen-
tary plaquette p. Periodic boundary conditions are as-
sumed.

Speeded-up algorithms may be obtained by directly act-
ing on the relevant degrees of freedom. At small values of
N,, it is generally accepted that the phase transition is
driven by the Polyakov loops [1]. A Polyakov loop at the
spatial point x is defined by (boldface quantities always
denote spatial, three-dimensional, objects)

N,
Pyi=1% TrHI Uxno- ()
=

Therefore, we attempted to devise cluster algorithms
[4-6] that significantly speed up the Polyakov-loop pseu-
dodynamics. As the basis for such algorithms we took in-
volutive operations (“flips”) [7-9] on appropriately cho-
sen degrees of freedom. Following [7] we call these de-
grees of freedom embedded Ising variables. In order to
ensure ergodicity, the cluster updates have to be supple-
mented by conventional local Metropolis [10] or heat-
bath [11] updates.

THE CLUSTER METHOD

The embedded Ising variables for our cluster algorithm
are the signs of the Polyakov loops. One way to have the
Polyakov loops among the degrees of freedom in terms of
which the model is written is to go to the temporal gauge
(“40=0"). Now, in order to obtain a successful algo-
rithm that does overcome critical slowing down, the em-
bedded Ising model should not be frustrated [4-6]. For
the signs of the Polyakov loops, however, we obtain, for
general NV,, an effective interaction that is frustrated.
Furthermore, we also obtain an undesired magnetic field
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term, whose fluctuating sign and strength depends on the
other degrees of freedom.

For the case of N,=1 an important simplification
occurs: there is no frustration and no magnetic field term.
For the timelike plaquette p that connects the spatial
points x and x+/ (j is a lattice spacing vector in the spa-
tial j direction),

7 TrU(p) =PyP, j+const, 3)

where the constant does not depend on the signs of P4 and
Py ;j. This corresponds to a ferromagnetic interaction of
the embedded Ising variables, the effective coupling being
BIPxPy ;.

In this situation our cluster algorithm is defined as fol-
lows. First we delete or freeze the links x,j (we use the
terminology of [12] here). The deletion probability for a
link is

Pa(x,j) =expl — B(PxP, ;+|PxP,4;)]. (€))

The freezing probability is 1 — Pgye(x,j). Two sites are
connected if they are at the end points of a frozen link. A
cluster is a connected set of sites (thus, of course, all links
from a site in a given cluster to one outside it are deleted;
on the other hand, two nearest neighbors that are part of
the same cluster are not necessarily connected by a frozen
link). In order to update the configuration we use the
single-cluster algorithm [5,8]: a cluster is “grown” around
a randomly chosen site (the seed) and flipped with proba-
bility one. A flip means the operation Px— — P for all
Polyakov loops in the cluster. Note that we flip only the
diagonal part of timelike links Uy o =Pl +iuy- o; flipping
Uy.0— — U, would not eliminate frustration.

We supplemented the cluster update with a local update
of all degrees of freedom. For the timelike links we used
the heat-bath procedure of [11]. Because of the N, =1
condition, we had to use a standard Metropolis procedure
to update the spatial links.

STRATEGY FOR THE SIMULATION

First we determined the exact location of the phase
transition from a standard finite-size analysis. We ob-
tained B.=0.8730(2) and critical exponents compatible
with those of the three-dimensional Ising model [13]. We
shall not give details of this analysis here, since, up to the
exact location of B., the results are what we expected in
accordance with the assumption of dynamical universali-
ty. We shall rather concentrate on presenting our results
for the autocorrelation times at the critical point, i.e., on
the quantitative study of critical slowing down for the new
algorithm.

Since we deal with a mixture of two algorithms (cluster
and local), let us start by defining one time unit in the
Markov chain as one local sweep followed by n cluster
flips. Let us further define the ratio R,

Ri=n (clustel; size) ’ )

L
of the work performed in the cluster part to that per-
formed in the local part. Let 7(L,R) be the exponential
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autocorrelation time at the critical point B. (i.e., the
slowest mode of the update procedure) [6]. The dynami-
cal critical exponent z is usually defined by the relation
ta L? [4-6,14]. In our case we can define an R-de-
pendent exponent z(R) if, for a fixed value of R, the rela-
tion

t(L,R) ac L*R 6)

is fulfilled. Studying the dependence of 7(L,R) on R is
also very interesting since little is known about the
analysis of critical slowing down for a mixed algorithm.
Notice that for a fixed L, the limit R— oo is the “ideal-
ized embedding” discussed in [6].

For a sufficiently accurate determination of 7, the runs
at B, were very long, between 30000 and 100000 time
units (for the study of the static critical properties alone,
much shorter runs suffice, since our algorithm is very
efficient). We measured a large number of observables,
including space- and timelike plaquettes, absolute value
of the lattice-averaged Polyakov loop |L ~3X, Py|, and
spacelike Wilson loops. We also defined and measured
improved observables [5,8,9], e.g., for correlations be-
tween Polyakov loops (details on the improved observables
will be presented elsewhere). Exponential autocorrelation
times were consistent for al/l observables that did show
slowing down at all (there were no visible autocorrelations
for spacelike plaquettes and Wilson loops).

We took great care to perform a thorough error anal-
ysis. We took into account the covariances of autocorrela-
tions at different time distances. We checked all results
for stability by doing a complete jackknife analysis. We
were also careful to verify whether the plots of the auto-
correlation functions do show a clear exponential decay
—such a check had turned out to be crucial during a con-
current cluster investigation [15].

RESULTS

First and utmost, the new algorithm spectacularly re-
duces critical slowing down. To exemplify this, we com-
pare in Fig. 1 two autocorrelation functions for a 323x1
lattice at B =p,, one for a purely local update, the other
for R=0.18 (for the definition of autocorrelation func-
tions see [4-6]). Although in the latter case for each local
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FIG. 1. Autocorrelation functions at 8. for the Polyakov loop
on a 323x 1 lattice, without clusters, and with R =0.18.
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FIG. 2. Log-log plot of autocorrelation times of Polyakov
loops at B vs L, for R=0, R=0.2,and R = 2.

sweep only 18% of the lattice sites are changed by cluster
updates, the speedup is tremendous. The 643x1 lattice
would have been totally unaccessible without cluster up-
dates.

As expected, z = 2 for the purely local algorithm [14]:
we obtain z(0) =2.05(11) from runs for L < 32 (see Fig.
2). For two very different values of R, R = 0.2 and 2, we
performed measurements of z(R) up to L =64 (the fact
that R was not exactly 0.2 or 2 but varied slightly with L,
e.g., R=0.18 instead of R =2 for L =32, does not affect
the results within our statistical errors). The relation (6)
was well obeyed, as seen again from Fig. 2. The value of
z(R) is drastically reduced to z(0.2) =0.61(8), and to
z(2)=0.45(8).

In order to study further the R dependence of the auto-
correlation time, we performed additional runs for L =8,
16, and 32. The results are collected in Fig. 3. At fixed L,
7(L,R) shows a very fast initial dropoff, roughly like 1/R.
Then, as R— oo, it goes to a constant asymptotic value
7(L), which corresponds to the “idealized algorithm” of
[6]. Notice that Fig. 3 suggests R =2 to already be al-
most asymptotic.

In our implementation, the CPU time for the cluster
and for the local update was roughly the same (in our case
the local part vectorized completely). Thus the CPU time
necessary to perform one time unit was roughly propor-
tional to 1 +R. An analysis of the data presented in Fig. 3
shows that R=0.5 will be the most effective algorithm:
for a given value of L, the quantity (1+R)z(L,R), i.e.,
the autocorrelation time in CPU units, is minimized at
R=0.5. If, e.g., the local part were not vectorized, a
smaller value of R would give optimal performance.

It is perhaps of interest to note that all results of Fig. 3
are well described by the phenomenological formula

-1
R 1

2 = |
@)

where Tw(L)oaL” is the autocorrelation time of the
idealized R — oo algorithm, 7}, & L is the autocorrela-

t(L,R)=71(L)+

FIG. 3. Autocorrelation times vs R for L =8, 16, and 32. The
curves are fits according to (7).

tion time of the purely local algorithm, and (L) may be
interpreted as the autocorrelation time for cluster updates
of the effective Ising models. The best fit for the various
dynamical exponents of (7) is zw=0.42(10), zjo
=2.05(11), and z4=0.64(19).

Notice that z. = z(2), in accordance with the previous
observation that at R=2, 7 (L,R) is already almost as-
ymptotic in R. These values for the dynamical critical ex-
ponent are consistent with the value obtained by [16] for
the three-dimensional Ising model with a single-cluster al-
gorithm.

In order to check the form (7) with good accuracy, a lot
of expensive runs at small values of R are needed. Howev-
er, a good theoretical understanding of autocorrelations of
a combination of two algorithms should be achieved first.

CONCLUSIONS

We have shown how to implement a cluster algorithm
for the SU(2) lattice gauge model with N, =1. For the
first time ever in the framework of continuous-group
gauge theories, critical slowing down was drastically re-
duced. This is due to a procedure that performs large-
scale fluctuations for the relevant degrees of freedom. As
a by-product of our investigation, we gained insight into
the behavior of autocorrelations for an algorithm that
combines two different update procedures.

We believe that similar methods may evolve into a clus-
ter method for investigating the finite-temperature transi-
tion of pure gauge theories.
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