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We investigate the surface width W of solid-on-solid surfaces in the vicinity of the 
roughening temperature T r. Above Tr, W 2 is expected to diverge with the system size L like 
In L. However, close to T r a clean In L behavior can only be seen on extremely large lattices. 
Starting from the Kosterlitz-Thouless renormalization group, we derive an improved formula 
that describes the small L behavior on both sides of T r. For the discrete Gaussian model, we 
used the valleys-to-mountains-reflections cluster algorithm in order to simulate the fluctuating 
solid-on-solid surface. The base plane above which the surface is defined is an L × L square 
lattice. In the simulation we took 8~< L ~<256. The improved formula fits the numerical 
results very well. From the analysis, we estimate the roughening temperature to be Tr = 
0.755(3). 

1. Introduction 

Solid-on-solid (SOS) models are useful as interface models (for reviews on 
SOS models, see e.g. [1]). They belong to a large class of models that are 
believed to be in the Kosterl i tz-Thouless (KT) universality class [2]. For  SOS 
models, the KT transition is the roughening transition. It is still a challenge to 
devise methods for the accurate study of this transition and for unambiguous 
t e s t s  o f  t h e  K T  t h e o r y .  
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As a prototype of an SOS model we consider the discrete Gaussian 
(DGSOS) model, defined by the partition function 

Z = ~ e x p ( - ~ T  ~ (hi-h~) 2), (1) 
h ( i , j )  

where h i a r e  integer "height" variables defined on the sites i of an L × L 
square lattice with periodic boundary conditions. A configuration h can be 
viewed as a surface without overhangs, embedded in three dimensions; its 
energy is obtained by summing over all nearest neighbor pairs (i, j ) ;  T is the 
temperature (Boltzmann's constant is set to one). The square of the average 
surface width W is defined by 

1 W2 =-E~ ((hi-hi)z) (2) 

The model has two phases. At low temperatures the surface is smooth, and W 
stays finite as L---~ 0o. When T is increased, we encounter the roughening 
transition at T = T r. The KT theory predicts [1,2] that in the thermodynamic 
limit 

W2~(Tr- T ) - V Z _ l n  ~ , (3) 

as T approaches T r from below (~ is the correlation length). For T/> T r ,  W 
diverges as L ~ w. The prediction for asymptotically large L is the "free field" 
behavior (i.e., continuous G a u s s i a n - h  i is real instead of integer) 

W 2 = Teff  In L + const. (4) 
"IT 

T e f  f is called "effective temperature" and 

2 
Te~ ~ ----~ for T = T r . (5) 

Furthermore, as T approaches T r from above, 

2 
T e l  f - - -  ~ ( T -  T r )  1/2 . (6) 

In principle, these formulas could be used in a numerical study in order to 
verify or disprove the KT theory. In practice, however, this is problematic. In 
the smooth phase, we would need unrealistically large lattices in order to test 
the power law (3). This problem is related to the difficulties encountered in the 
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study of the dual (Villain, X Y )  spin models, where it is hard to cleanly 
distinguish an essential singularity in the correlation length s c (as predicted by 
KT) from a power law singularity [3,4]. In the rough phase, for large enough 
temperatures,  the behavior (4) could be unambiguously verified numerically 
[5]. However ,  it turns out that close to T r a clean logarithm is only seen on 
very large lattices, and in order  to extract the values of Tef f in practice we need 
to know the corrections to eq. (4). Otherwise we cannot determine T r by 
checking eq. (5). Furthermore,  for the largest lattice sizes accessible with 
present day computers and algorithms, it turns out that eq. (6) is not yet 
fulfilled for the region where eq. (4) holds. Actually, the status of eq. (6) is 
even worse, as will be argued later. 

In order  to overcome these problems, we developed a renormalization group 
(RG)  improved formula for the dependence of W 2 on L. This is our  main 
theoretical result. The numerical part of our work shows that the improved 
formula can be used for extracting Tel f as close as desired t o  Tr,  from 
numerical simulations on reasonably sized lattices. We mention that very high 
accuracy simulations were possible because we have a cluster algorithm that is 
free of critical slowing down (the valleys-to-mountains-reflections algorithm 
[6]). Vectorization [7] also helped. From our analysis, the best estimate for the 
roughening temperature is T r = 0.755(3). 

In what follows, we first derive our improved formula,  then present the 
analysis of the numerical results, and finally make some additional remarks and 
present our conclusions. 

2. RG improved finite L formula for the surface width 

The R G  flow of the DGSOS model can be described in an x - y  diagram [2]. 
The trajectories are parametrized by t, the logarithm of the changing length 
scale, x(t)  is related to the scale dependent  (" running")  temperature  T(t) ,  
x(t)  = ~ r T ( t ) -  2, while y(t)  is a constant times the fugacity [2]. The KT flow 
equations are [2] 

y(t)  = - x ( t )  y ( t ) ,  ,~(t) = - y ( t )  2 . (7) 

The trajectories are hyperbolas, characterized by the constant E which 
depends on the temperature  T of the model (not on the running T(t)!), 

y(t) 2 - x ( t )  2 = E .  

Denoting • = sgn(E) ]~qE-], and x 0 = x(0),  the full solution of eq. (7) is 

(8) 
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2(x0 - •) ) 
E < 0 :  x ( t ) = •  l + ( x  o+•)e-~p(27})-_(x  o - • )  ' 

X o 
E = O : x ( t )  - l + xot ' (9) 

E > O :  x ( t ) = •  
x 0 - • tan(Et) 

• + x o tan(et) " 

The trajectories in the rough phase reach the free field theory and have • < 0; 
in the smooth phase they have • > 0; at the KT transition the critical t rajectory 
has • = 0 [2]. Notice that in the rough phase Teff = T(t = o~) _- (2 - • ) / v .  

In order  to use the RG for computing the surface width, we need to know 
the contributions corresponding to each length scale. Eq. (2) shows that W z is 
a sum of a two-point-function over all distances. When increasing the lattice 
size L, we get additional additive contributions from distances of order  L. Let  
us choose 

with L 0 some reference length scale, and let us approximate the sum in eq. (2) 
by an integral. For the free field theory,  the additional contributions to W 2 
coming from an infinitesimal change in L are easily computed: since eq. (4) is 
always true, with Tef f replaced by the temperature  T, we have d W 2 / d t  = T / w .  

In the case of the DGSOS model,  the KT flow shows that for trajectories in the 
rough phase we are close to the free field theory if t is large enough. Moreover ,  
we are close to the free field theory too for trajectories in the smooth phase, 
provided that L is much smaller than ~ but still large enough. Thus the main 
contribution to d W 2 / d t  will be similar to the free field case, with the only 
( important)  difference that we replace T by the running temperature  T(t ) ,  

d W  2 T(t) 

dt ~r 
(11) 

Assuming that T(t) behaves according to the KT flow for length scales larger 
than L0, we can integrate eq. (11), 

W2 = 4 i [x(t) -+- 2] dt + C.  
7r o 

(12) 

The constant C contains the contributions of distances smaller than L 0. Using 
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eq. (7) and eq. (8), we can express dt in terms of x and dx, after which eq. (12) 
reduces to an elementary integral. We thus obtain our final formula for W 2, 

W2 2 1 /X2o + E \  
= - ~ y t  + 2,rr-----~ ln~x-T-~+ E )  + C ,  (13) 

which has to be used in conjunction with eqs. (9) and (10). 
The crucial point in the derivation of our  improved formula was the 

replacement,  at the appropriate stage, of the temperature  T with the running 
temperature  T(t). While this is a commonly used procedure in field theoretical 
R G arguments, it is not completely rigorous. A more thorough argument,  
based on a block-spin calculation within the Wilson RG  framework,  will be 
presented elsewhere [8]. 

3. Simulation results 

We performed simulations of the DGSOS model for ten different values of 
the temperature  T. At each T we considered lattice sizes of L = 8, 16, 32, 64, 
128 and 256. Typically, we generated about 2 000 000 to 2 500 000 clusters for 
each temperature  and lattice size. The expectation value of the cluster size 
varied in the range 0.3L z to 0.35L 2. The whole project  required about 400 
hours on one CRAY-YMP processor. As will become clear from the analysis, 
we did not need more than half of our runs in order  to obtain the best estimate 
for T r. However ,  our aim was also to confirm our prediction for the L- 
dependence of W 2 and to determine the region in which the improved formula 
is really necessary. The simulation results for W 2 are given in table I. 

Table I 
Simulation results for W 2. 

T L 

8 16 32 64 128 256 

0.740 0.51429(34) 0.66739(33) 0.81589(32) 0.96185(33) 1.10558(34) 1.24908(39) 
0.745 0.51984(37) 0.67560(34) 0.82571(32) 0.97408(33) 1.12248(33) 1.26710(40) 
0.750 0.52537(37) 0.68222(35) 0.83542(35) 0.98661(34) 1.13615(35) 1.28461(36) 
0.755 0.53137(30) 0.69052(34) 0.84475(33) 0.99877(33) 1.15066(34) 1.30165(38) 
0.760 0.53733(37) 0.69725(34) 0.85444(33) 1.00956(29) 1.16440(28) 1.31721(39) 
0.770 0.54900(35) 0.71185(32) 0.87292(33) 1.03164(36) 1.18993(34) 1.34726(37) 
0.780 0.55902(36) 0.72606(34) 0.88941(33) 1.05190(38) 1.21432(36) 1.37515(40) 
0.800 0.58006(38) 0.75240(34) 0.92271(35) 1.09176(40) 1.26032(37) 1.42846(40) 
0.820 0.59963(37) 0.77776(34) 0.95355(34) 1.12807(36) 1.30248(38) 1.47770(42) 
0.850 0.62762(37) 0.81304(37) 0.99679(36) 1.18076(38) 1.36315(40) 1.54571(43) 
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As a general  rule, these data  are ext remely  well fitted by eq. (13),  with fit 

pa rameters  E, x 0 and C. Aside  f rom the occasional  statistical f luctuat ion,  we 
did howeve r  notice that  for  T ~<0.755 the quali ty of  the fits de te r io ra ted  a 

little. The  impor tan t  results of  such fits are the value of  E, which character izes  

the t ra jectory,  and the range of  L for  which the fits are good ,  which roughly  

tells us where  the model  enters  the KT flow. Notice that  we have to decide 

upon  a value for L 0. The  choice of  L 0 only affects the values x 0 and C, as can 
be seen after  a little algebra.  Table  II  contains  the fit results for  e, for  all ou r  

values of  T and for various fit ranges.  Clearly,  for  T 1> 0.76 the var ious  fit 

ranges give compat ib le  results. In fact the data  for  L = 256 hardly improve  

things here.  For  T ~< 0.755, however ,  the fit results for E somet imes  change  by 

more  than two s tandard  deviat ions if we r emove  the data  for  L = 8. It may  be 

that  for  these t empera tures  the KT flow is well reached  only above  L = 8. 

F rom table II  our  first main numerical  result strikes the eye:  since e > 0 for  

T ~< 0.75 and e < 0 for T /> 0.76, T r is be tween  0.75 and 0.76. This result  relies 
solely on the fact that  eq. (13) fits the data  well, and on eq. (5). 

In  o rder  to give a more  precise de te rmina t ion  of  Tr, we plot ted  for  each fit 

range e versus T, with er rorbars ,  and in terpola ted  the two curves e + e r ro r  and 

• - error.  The  intersect ion of  the so-obta ined  band  with the • = 0 line provides  

an est imate of  T r. In table I I I  we collected these range dependen t  estimates.  

They  are quite consistent  with one  another .  Thus ,  taking into account  the 
above  observat ions  about  the quality of  the fits for  T ~< 0.755, it would  no t  be 

Table II 
Fit results for the parameter E. 

T L 

8-256 16-256 32-256 8-128 16-128 

0.740 0 .204(06)  0.178(10) 0.151(23) 0.226(08) 0.206(16) 
0.745 0.171(07) 0.139(14) 0.165(21) 0.168(11) 0.060(57) 
0.750 0.126(09) 0.109(17) 0.103(35) 0.137(14) 0.117(30) 
0.755 0.030(38) -0.078(25) 0.059(60) 0.054(33) -0.102(33) 
0.760 -0.124(10) -0.130(14) -0.128(27) -0.131(13) -0.151(21) 
0.770 -0.211(06) -0.210(09) -0.221(17) -0.211(09) -0.205(17) 
0.780 -0.277(05) -0.287(07) -0.278(14) -0.278(07) -0.300(12) 
0.800 -0.387(04) -0.387(06) -0.388(11) -0.386(06) -0.387(10) 
0.820 -0.478(03) -0.484(05) -0.494(09) -0.471(05) -0.474(09) 
0.850 -0.601(03) -0.599(04) -0.590(08) -0.603(04) -0.601(07) 

Table III 
T r from the interpolated curves e(T). 

Fit range L 8-256 16-256 32-256 8-128 16-128 
Estimated T r 0.7555(25) 0.7535(15) 0.7550(30) 0.7555(25) 0.7515(55) 
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unreasonable to quote as our final result the value of T r for the L-range 
16-256. 

For  a more conservative estimate of T r we plotted the values of ~ from the 
ranges 8-256 and 16-256, together with their errorbars,  on the same plot. We 
interpolated the upper and lower envelope of the errorbars.  From the 
intersection of the so-obtained band with the E = 0 line we get the estimate 
Tr=0 .755(3  ). Notice that the best estimate in the literature [11], T r =  
0.7524(7), was obtained by a completely different method (matching with the 
critical block spin flow of the BCSOS model) that does not test directly any of 
the formulas derived from the KT theory. The best estimate by other  authors 
[3], T r = 0.752(5) (from the analysis of the correlation length and susceptibility 
in the massive phase of the Villain model),  is also consistent with the result 
presented here. 

At the beginning of section 2 we explicitly wrote down the t dependence of 
the running temperature  T(t). With the numerically determined fit parameters  
and x0, we can thus compute the flow of T(t) numerically. If we use x(t) instead 
of T(t), we can neatly plot the points (x(t), y(t))  inside the standard KT flow 
diagram. We can now do the following consistency check. The differences 
7rAW2/At = (~r/ln 2 ) [ W 2 ( 2 L ) -  W2(L)], shown in table IV, should be discrete 

approximants of T(t), by eqs. (10) and (11). Thus if we again plot the values of 
the points (x(t), y(t)) ,  this time using the discrete approximation, we expect to 
obtain a similar diagram. We did this exercise and indeed the two diagrams 
were almost identical. 

In the last column of table IV we show the values of Tee f = ( 2 - e ) / ~ ,  
obtained by again taking for each T > T r the envelope of the errorbars from 
the fits with L-ranges 8-256 and 16-256. Above Tr,  if L is large enough for eq. 
(4) to hold, the running temperature  stabilizes to the value Tel f. By looking at 

Table IV 
The differences ~rAWE/At compared with To,. 

T L Tof~ 

8-16 16-32 32-64 64-128 128-256 

0.740 0.6939(21) 0.6731(21) 0.6615(21) 0.6514(22) 0.6504(24) T< T r 
0.745 0.7059(23) 0.6804(21) 0.6724(21) 0.6726(21) 0.6555(23) T< T r 
0.750 0.7109(23) 0.6944(22) 0.6852(22) 0.6778(22) 0.6729(23) T < T  r 
0.755 0.7213(21) 0.6990(22) 0.6981(21) 0.6884(21) 0.6843(23) T~T~ 
0.760 0.7248(23) 0.7124(21) 0.7031(20) 0.7018(18) 0.6926(22) 0.6777(48) 
0.770 0.7381(21) 0.7300(21) 0.7194(22) 0.7174(22) 0.7131(23) 0.7035(29) 
0.780 0.7571(22) 0.7404(22) 0.7365(23) 0.7361(24) 0.7290(24) 0.7267(35) 
0.800 0.7811(23) 0.7719(22) 0.7662(24) 0.7640(25) 0.7620(25) 0.7598(19) 
0.820 0.8074(23) 0.7967(22) 0.7910(22) 0.7905(24) 0.7942(26) 0.7900(22) 
0.850 0.8404(24) 0.8328(23) 0.8338(24) 0.8267(25) 0.8274(27) 0.8273(16) 
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how the results in the rows of table IV stabilize, we see that our data for W 2 
enter  the asymptotic regime of eq. (4) for 0 . 8 ~  < T~<0.85 clearly, and for 
T = 0.78 just barely. For T r ~< 0.77, however,  this is far f rom being true, even 
at L = 256. Notice that in order  to understand the validity region of eq. (4) we 
did need the values of W 2 for L = 256. More  importantly,  notice that our  

results show that the use of eqs. (4) and (5) for determining T r (like e.g. in 
[9,10]) leads to a consistent underest imate.  

In order  to test eq. (6), we fitted the values for T~ff f rom table IV. The fit 
was not at all good. We then allowed for a free power  instead of the power  ½. 
The fit was now good, but the power  was 0.60(4). Disregarding the farthest 

away point f rom T r, T = 0 . 8 5 ,  the situation did not improve:  the power  
changed to 0.62(7). The fitted value for T r w a s  0.753(2) with the point 
T =  0.85 included, and 0.752(4) without it. While these values for T r are 
reasonable,  the fact remains that the power  1 is not yet seen even as close to 

T r a s  our data in the rough phase are. Notice that this conclusion implies in 
particular that we cannot use eq. (6) in order  to fit results in a region where the 
simple behavior  (4) applies on lattices of still manageable  size. 

As a last issue, let us remark  that in the absence of a theory,  one may be 
simply tempted  to make some " reasonable"  ansatz for the corrections to eq. 
(4). We tried to fit the data with a In(In L )  correction (the coefficient in front 

of In(In L )  is the third fit pa ramete r  besides Tef f and the constant).  The fits 
were as good as those with eq. (13), if not better.  However ,  the values of  Tef  f 

thus obtained were clearly wrong. It is not difficult to understand the numerics 
behind this phenomenon.  The main point is however,  to view this as another  
example of the danger of analyzing simulation results without a solid theoret-  
ical basis. 

Along the same lines, let us remark  that we found a different modification of 
eq. (4) to also fit the data very well: instead of taking In L we took a power  of  
In L (this power  is the third fit parameter) .  The power  that allowed for good 
fits very close t o  T r never  deviated from the value 1 by more  than 10%. 
Nevertheless,  the fitted values for Tef f were again clearly wrong with this 
procedure.  

4. Conclusions 

We have derived a renormalization group improved formula  for the finite 
size behavior  of the SOS surface width in the vicinity of the roughening 
transition. The improved formula was tested in a high accuracy simulation of 
the D G S O S  model ,  and found to describe the data excellently. As a result of 
our analysis, we 
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-verified an impor t an t  aspect of the K T  scenario,  

- g a v e  a precise de t e rmina t i on  of Tr, 

- found the region in which eq. (4) canno t  be used unless  we cons ider  much  

larger lattice sizes, 

- found that  the region of applicabil i ty of eq. (6) is much  smal ler  t han  

previously  assumed.  
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