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Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quan-
tum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard
model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms
and the standard world-line algorithm, we calculated the autocorrelation times for various physical
quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from
very long correlation times that makes not only the estimate of the error difficult but also the estimate of
the average values themselves difficult. These difficulties are especially severe in the low-temperature,
large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with
themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some
cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are
discussed from the point of view of a general prescription for developing cluster algorithms. The loop-
flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to
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other models and higher dimensions are briefly discussed.

1. INTRODUCTION

The world-line quantum Monte Carlo method is fre-
quently used by condensed matter and field theorists to
simulate lattice models of systems of interacting fer-
mions, bosons, and quantum spins.1 This method has be-
come a textbook example? of a quantum Monte Carlo
method as one of its virtues is its simplicity. Another vir-
tue is its production of world-line patterns that often pic-
torially represent the imaginary-time quantum dynamics
of the model. Several difficulties with the method are
also well known.

The most notable difficulty,” which the world-line
method shares with almost all other quantum Monte Car-
lo methods, is a sign problem which is manifested by
Monte Carlo transition probabilities becoming negative.
Typically, this difficulty renders the method ineffective.
A difficulty’ more unique to the world-line method is the
lack of ergodicity as in practice the winding number of
the world lines is conserved and thereby the sampling of
phase space is restricted. The winding number conserva-
tion corresponds to the conservation of fermion number
and thus places the method in the canonical ensemble.

A less appreciated and infrequently studied difficulty is
the world-line method’s very long autocorrelation time
between measurements of physical quantities. These long
times make error estimation for these quantities difficult
and can cause long computer runs. The main purpose of
this paper is to illustrate the extraordinary lengths these
times can take and to present two new ways of imple-
menting the world-line method that in many cases reduce
these times by several orders of magnitude. The new
methods are a significant improvement in efficiency. One
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method is also naturally ergodic and grand canonical as
winding number is not conserved.

With improved efficiency, the new methods generate
significant reductions in the variance of the calculated re-
sults for a fixed amount of computing time. Since the
sign problem is usually accompanied by a dramatic in-
crease in the variance of the measured quantities, the ex-
tensions potentially mitigate the sign problem. They do
not, however, address it directly. Oddly, some combina-
tions of the new methods permit a sign problem to occur
in simulations for which the standard implementations
have no sign problem. We found that this was a minor
problem, occurring infrequently only at high temperature
in very small systems and decreasing as the lattice size
was increased. Constructing still other methods that con-
serve winding number is possible; however, allowing the
winding number to change often appears to be a key in-
gredient for improved performance.

We will present our new algorithms by discussing their
application to world-line simulations of the one-
dimensional repulsive Hubbard model. The Hubbard
model is one of the simplest models of interacting elec-
trons, and for it we will study the autocorrelation time
among measurements of the different physical quantities
germane to its interesting physics. In Sec. II, we define
the model and give a brief description of the computation
of its thermodynamic properties from a path integral.
Here, we will also define and discuss how we measured
the autocorrelation times. To establish notation and
make subsequent discussion reasonably self-contained, we
also present the particular implementation of the world-
line method used in our studies. This implementation
focuses on Monte Carlo moves that change the state of
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plaquettes defined on the space-time lattice on which the
world lines exist.

In Sec. III, we present our two new world-line
methods, which we call the loop-flip and loop-exchange
methods. The loop-flip method is an extension of the
work of Evertz et al.* who developed a loop-flip algo-
rithm to reduce critical slowing down in six-vertex model
simulations. In that work, they observed that world-line
simulations of quantum spin systems have similarities to
simulations of the six-vertex model and suggested the po-
tential utility of their algorithm for simulating such sys-
tems. We will discuss the extensions of the procedure
necessary for simulating fermion systems. We also
present our second method, the loop-exchange algorithm.
For fermion systems, we found it very useful to exchange
portions of up- and down-spin world lines to accelerate
the sampling of phase space. This exchange was designed
to overcome the difficultly of moving up- and down-spin
world lines across one another because of the Coulomb
repulsion between the fermions that exists in the Hub-
bard model. Our two new algorithms, in sharp contrast
with the standard implementations of the world-line
method, use nonlocal (global) updating moves. These
moves generalize the cluster algorithms recently
developed to reduce long autocorrelation times accom-
panying simulations of critical phenomena in classical
spin systems.> Here, we are not concerned with critical
phenomena, but rather we are reducing the inherently
long autocorrelation times that occur in the world-line
method even when the physical system is far removed
from any known phase transition.

We investigate in Sec. IV the effectiveness of various
combinations of the algorithms for computing several
different properties of the repulsive Hubbard model. For
a standard version of the world-line method, which we
call the plaquette-flip algorithm, the autocorrelation time
was too long to measure in most cases, even with the use
of relatively long computer runs. In these cases, reliable
error estimation is very difficult. Our new algorithms did
not suffer from this problem. Finally, in Sec. V, we sum-
marize our findings and discuss important issues awaiting
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further investigation, particularly for doing models other
than the Hubbard model and for studying models in
higher dimensions.

II. BACKGROUND AND DEFINITIONS
A. Hubbard model

The one-dimensional Hubbard Hamiltonian is

H=3H;; ;=3 [T;; 1 +3V;+V: 1)1, (1)
i i
where
T,iy1=—t E(Citaci+1,o+ci)r+1,aci,a) @)

g

and
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Here, c,»Ta and c; , are the creation and destruction opera-

tors for a fermion at site / with spin ¢ (up or down) and
n,-y(,=citac,-,¢, is the fermion number operator at site i for
spin o. The first term in (1) is the kinetic energy of the
electrons and describes their hopping, without spin flip,
from site to site. The second term is the potential energy
(Coulomb interaction) that exists only if two electrons oc-
cupy the same site and includes the chemical potential u
term for convenience. We took U>0. The model is
defined in such a way that when u equals zero, the model
exhibits particle-hole symmetry. With this symmetry,
there are an equal number of up- and down-spin electrons
and their sum equals the number of lattice sites N (the
half-filled case). We assume periodic boundary condi-
tions.

At half filling, the system is an insulator, with antifer-
romagnetic spin fluctuations dominating charge-density-
wave fluctuations. At other fillings, it is metallic. In-
creasing the parameter U suppresses the charge fluctua-
tions and enhances the spin fluctuations. The following
correlation functions are useful descriptors of these two
types of fluctuations:$

Tx+(q)= EIJV fo"drz e *((nj 4 1 (D)ER 4 (), 1(0)En; 1(0)) @
J-k

They measure static spin-density-wave (SDW) and
charge-density-wave (CDW) correlations.  Simpler
measurable quantities include the energy E=(H ) and
the average electron occupancy per site,

1 8

As we discuss below, we compute these quantities as
functions of imaginary-time 7 and their definitions reflect
an average over this parameter.

In (4) and (5), the symbol { - - ) denotes the finite-
temperature expectation value of some physical observ-
able and is defined by

|
(A)=Trde PH/7Z | 6)

where B=1/kT is the inverse temperature, Z =Tre ~8H is
the partition function of the system, and Tr denotes the
trace operation. The basic idea of the world-line method
is to express the trace operation as a path integral in
imaginary time and then use Monte Carlo techniques to
evaluate the resulting multidimensional functional in-
tegral numerically.

B. Path integrals

To develop the path integral, we rewrite the partition
function of the system by dividing the imaginary-time in-
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terval 0 <7 =p into L slices of width 7=B/L and insert-
ing complete sets of states |s ) at each time slice:

Z=T (sile ™|s; ) - (s3le " H|s,)(s,le s, ),
{Sil

()

where the sum is over the set {s;} ={s,,s,,...,s;} of all
states 5;. The subscript on the identifier s of the different
members of the complete set marks the time slice at
which the states were inserted. The properties of the
trace require the propagation in imaginary time to be
periodic.

|

In order to simplify the evaluation of the matrix ele-
ments in (7), we rewrite the full Hamiltonian as the sum
of two easily diagonalizable, but not necessarily commut-
ing, pieces, H=H,+ H,. Using one form of the Suzuki-
Trotter approximation,” we may then approximate the
imaginary-time evolution operator e ~ ™ by

e e T T (8)
When this approximation is used in the expression for the
partition function (7) and additional intermediate states

are inserted, the resulting expression for the partition
function is

z=3 (slieHTH2|s2L) e (s4|e~TH‘ls3)(s3|e-TH2|s2)<s2|e_TH’|s1) . (9)

{s;}

In Sec. I C, we will give specific choices of H; and |s ) for the Hubbard model. Here, we are concerned only with the

general framework of the method.

We now see that the partition function (9) may be re-expressed as a functional integral over all possible configurations
@={s;}. To evaluate the path integral, Monte Carlo importance sampling is used. This method generates a sequence
of configurations €; (see below), which, in the infinite-sequence limit, conforms to the probability distribution

P(@)=(sle sy ) {ssle s, (syle T s,)/Z

=W(e)/Z .

Such a sequence may be generated by beginning with an
arbitrary (allowed) world-line configuration @, and then
considering some modified configuration ¢;. One then
computes the probabilities for these configurations,
P(@,) and P(Cy), and accepts the modified configuration
with probability R for which we choose

Py w(@p)
P(C)+P(Cy)  WI(C)+WI(Cy)

(1n

If the modification is accepted, the new configuration will
be @,=C; otherwise the old configurations will be re-
tained: @,=¢,. The procedure is then iterated to pro-
duce @,, @, etc.

C. World lines

For fermion lattice models, the standard choice for the
complete set of states |s ) is the occupation number basis
formed from the state

TN PR TN O I PN PPN )

by allowing each lattice site to assume all possible occu-
pancies of up and down electrons.® The splitting of the
Hamiltonian H=H,+H, is usually done by having H,
and H, refer to the odd and even lattice sites.’ With
these choices, the product of the matrix elements in the
expression (9) for the partition function factorizes into
products of matrix elements defined on shaded squares
(plaquettes) of up- and down-spin checkerboards. The
summation over all states becomes a summation over all
combinations of occupancies n/; for each spin. Here, i
labels the spatial (real-space) position and /, the temporal

(10)

f

(imaginary-time) position. A shaded plaquette for a given
spin is one with the four sites (i,1), (i+1,1), (i,I+1),
and (i+1,/+1) where i and [ are either both even or
both odd. A world line for a given spin is a continuous
line constructed from straight line segments connecting
occupied sites. A one-to-one correspondence between
fermions and world lines can be made if two parallel vert-
ical (temporal) lines are assigned to a shaded plaquette
with four occupied sites. These concepts are illustrated
in Fig. 1 which shows the checkerboard and a typical
world-line configuration for one spin component of a sys-
tem of four electrons on an eight-site lattice.

Because of the checkerboarding, we can write the par-
tition function as

Si
S8
S7 N

Se <

Ss <
S4 AN

S3
S2
St

FIG. 1. An example of the space-time checkerboard for a
single component of spin. Here, four electrons of the same spin
are on eight lattice sites, which are along the horizontal direc-
tion. In the vertical direction are 2L =8 imaginary-time steps.
The symbols S; along the left edge designate the many-body
state at that imaginary-time step. The ket |S,) represents
[1,1,0,0,1,1,0,0), for example.
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Z=3 sgn({n)W({n7}), (12)
[”,“y’ll
1 T ! !
L N/2 nai—1,21 321 nai—1,21 N1
w({n})= w| 1 1 | !
b 11;[1 ,-I;Il Nai—1,20—1 M2i21—1| P2i—1,21—1 M2i20—-1
nl nl nt nt
2i21+1 M2i+1,2141 2i21+1 M2i+1,21+1
Xw 1 1 i ! (13)
TR nai+1,21 N3 nyi41,21

The arguments of the functions on the right-hand side are written in a foom that emphasizes the plaquette structure for
both up and down spins. Clearly, the weight (13) reduces to a product of weights for only the shaded plaquettes. If we

further choose

e'THi,ine—T(Vi“LV.'HV"e"TTi,i+1e“f<Vi+Vi+1V4 (14)
then we can express the local weights as
nin}|nin} ninll (nin3) (nln}|nin}
w =u u v
ninl|nink ninl | nink |V |nin] |nint (13)
with
P 8y 080 O n.ACOSK(TE)S, 1) 8, 108, , +sinh(T)8, 1_n 8, 1_, 8 (16)
ning T Un,nyUng,n,ng,ng cosh{t nl,l—n2 ny,l—n,"ny,ny sinh(7? nl,l—n2 n3,l—n4 nl,l—n3
[
and cordingly, on this torus, we can define spatial and tem-
- . poral winding numbers for any closed loop, for example,
hin, | nin; 4 . a world line. To be more specific, to define a spatial
Viptatl nintl™ I1vi(ni,n), (17)  winding number for a given loop, let us first suppose we
374 304 = have a spatial cut, i.e., a vertical line in Fig. 1 which
here starts somewhere at the bottom and ends at the top of the
w checkerboard. (The location of the cut does not matter
vy(n,n')=e (/AU =1/D=pn+n'=D] — (1g)  since it does not affect the definition.) Then, if we trace

In (16), we see the kinetic-energy contribution to the
weight is nonvanishing only for certain sets of occupan-
cies. In fact, out of the 2*=16 possible plaquettes for ei-
ther an up or a down spin, only 6 plaquettes satisfy local
fermion conservation and these are shown in Fig. 2.

The manifold on which the world lines are defined is a
two-dimensional torus since we have a periodic boundary
condition for both spatial and temporal directions. Ac-

3

FIG. 2. The six allowed shaded plaquettes. The values of ¢
are our symbols for the depicted plaquette.

the entire path of the loop and it passes a spatial cut in
one direction m times and in the opposite direction n
times, then the spatial winding number of this loop is
defined to be m —n. The total spatial winding number of
world lines is defined as the sum of the spatial winding
numbers of all the world lines. A temporal winding num-
ber of a given loop and the total temporal winding num-
ber of world lines are defined in the same fashion but with
the temporal cut being a horizontal line in the checker-
board. In what follows, when we say spatial or temporal
winding number, we will mean the total spatial or tem-
poral winding number of the world lines.
The sign in (12) is defined in terms of the world lines

Sz,-1n
sgn({n7})=(—1)' ; (19)
where Z; is the temporal winding number of the /th
world line and the sum is taken over all the world lines.
Its origin is the fermion anticommutation. For the one-
dimensional Hubbard model, the standard world-line al-
gorithms have no sign problem as Z;=1 and is con-
served. For the new algorithms we will be proposing this
will not be the case. Whenever a configuration with a
negative sign occurred in our simulations, we treated it in
the ordinary way;® that is, we computed thermodynamic
averages by

(A4)=73 sgn(C)A(C)/3 sgn(C) . (20)
e g
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By using this formula, we do the Monte Carlo simulation
with the following weight:

zZ'=3 w({n3}), 1)

{",'?1 J

that ignores the sign factor.

D. The plaquette-flip algorithm (algorithm P)

The world-line method can be implemented in several
different ways. We will now highlight the main points of
an implementation which focuses on Monte Carlo moves
that change the local fermion occupancies of plaquettes
defined on a checkerboarding of imaginary time and
space. This implementation leads to efficient algorithms
not only on serial computers but also on vector and
parallel machines.”!!

To generate different sequences of world lines, one uses
the observation® that only one basic movement of a
world-line segment can occur: If an unshaded plaquette
has a world-line segment on one vertical edge and none
on the other, the allowed movement is vacating the one
edge and occupying the other by moving the world-line
segment across the unshaded plaquette. This movement
is illustrated in Fig. 3. Algorithm P accomplishes this by
visiting in sequence each unshaded plaquette for both the
up- and down-spin checkerboards and attempting a local
move that flips all four corners of the unshaded plaquette.
Flipping a corner means replacing the value of the vari-
able n;, by 1—n, ;. The configuration weights W(€) and
W(@') are determined by computing the product of the
weights (15) for the four neighboring shaded plaquettes
for both the old and flipped configuration. These weights
are then used in (11) to determine whether the flip is ac-
cepted or not. An important point is that we need to
know only local states (the occupancies of the shaded pla-
quettes surrounding the unshaded one) to calculate this
probability rather than the state of the whole system.
This is the case because the attempted flip changes the
configuration only locally since the Boltzmann weight
(15) is factorized into a product of local weights.

In algorithm P, the winding number of any world line

J

ZA

i=1

| L .
H'—_—tigl A(l+t)A(l)“( —t)z

FIG. 3. The allowed movements of world-line segments back
and forth across a unshaded plaquette.

in any direction, temporal or spatial, is conserved. We
found, however, that this broken ergodicity, as expected,3
has only a small effect on the simulation, especially for
larger lattices.

E. Autocorrelation times

The basic property of the Monte Carlo method is to re-
place the thermodynamic average (6) by the average of
A(t) over M Monte Carlo steps:

(A)zZE—A—I—EA(t), (22)

where A(t) is the value of a physical quantity A4 (energy,
SDW correlations, etc.) at Monte Carlo step z. If M is
large enough and the A(t)’s are statistically independent
estimates of A, then the error estimate for 4 would be
o /V'M where

]

o1 X RD
o = 1 Z[A(t)—A] . (23)
t=1

To measure the degree of statistical correlations, we
calculated two kinds of quantities. The first one is an in-
tegrated autocorrelation time defined by

r=—1+ 2 r, (24)

where

r (0= (A(1g+1)A(19)) —(A(29)) A (1)) 25)
A T ) At —{ A1) Al2g))

In the actual simulation, I" ,(¢) is approximated by

M
S A)

i=t+1

(26)

T ()=

[A(i)A(i)~ZZ]

||Mg

1
M,

The variance o2, of data correlated with the time 7, is
related to the variance o computed from (23) in the ab-
sence of correlations by!?

OFizntzZTiﬁt‘72 . 27)

Thus, in the presence of correlations, 27/, more simula-
tion steps are needed in order to achieve the same vari-
ance of a measured quantity. Accordingly, error esti-
mates computed when correlations are unknowingly

f

present are always smaller than the actual error.

Typically, the autocorrelation function is not a simple
exponential function in time. This fact sometimes makes
estimating 7, by (24) difficult. Another estimate of T, is
obtained by examining what it takes to produce statisti-
cally independent measurements. We grouped the M
measurements into n bins of length / =M /n, and for a se-
quence of bin lengths (chosen to be 2,4,8, .. .), we com-
puted the bin averages 4,(/) of the A4(t)
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_ 1 bl

t=(b—1)+1

A(t), (28)

and the variance of these averages
n — —
oIP=—1 S [Z,—AP. 29)
n—1,Z

This variance should become inversely proportional to /
as the bin size / becomes large enough so that the A4,(/)
as a function of b becomes statistically independent.'®
When statistical independence is approached, the quanti-

ty

la(1y
iD= 5 (30)
where o2 is computed from (23), approaches a constant as

a function of I."> This constant is our estimate for 7.
The error estimate becomes o(I*)/V'n where [* is the
value of / at which the constant is reached. We note that
with the use of (30), we can rewrite this error estimate as
0V 27,,/M and obtain the expected result (27). We also
note that we have defined 73,(1) so that 74(1)=1.

Generally, 74,(1) is an increasing function of /. This in-
crease, however, ceases when / becomes much larger than
the autocorrelation time 74. As we discuss below, we
found cases where, in spite of a very long computer run,
74.(1) keeps increasing as function of I. In such cases, we
estimated a lower bound for 774, by selecting the value
74.(1) for the largest available /.

A different measure of autocorrelation time we used is
the exponential autocorrelation time 7, which by

definition is the largest autocorrelation time associated

with a given algorithm. We determined 7., from the
t— oo asymptotic behavior of T" 4(¢),
T (0)~y qexp(—1 /7)) , (31)

by fitting a straight line to InI" ,(z). We remark that, in
practice, the most stable estimates of 74, were obtained
by summing I" ,(¢) in (24) only up to some finite t =W,
with W of the order of 7.,,, and computing the contribu-
tion of t > W from (31).

The autocorrelation time 7, corresponds to the
second largest eigenvalue of the transition probability
matrix W(€C— ') for changing configuration € to €'.
(The largest eigenvalue is one, with the Boltzmann distri-
bution as the eigenvector.!*) This correlation time de-
pends on the algorithm. The constant ¥ 4 in (31) depends
on the observable A (as well as on lattice size, tempera-
ture, etc.) and can be very small or zero for some observ-
ables. In general, 7., is more difficult to estimate pre-
cisely than 7. In order to determine accurately Texps WE
must therefore use a suitable range of observables to es-
tablish consistency. In some cases, we could not obtain
reliable estimates of 7, as we will see below. Another
remark about 7, is that the longest-lived physical mode
associated with it can be a mode whose contributions to
the quantities of interest are negligible. We will discuss
this point more fully later.

III. NEW ALGORITHMS
A. The loop-flip algorithm (algorithm L)

We will discuss the loop-flip algorithm (algorithm L).
In contrast to algorithm P, which makes only local
changes in configuration space based on local decisions,
the loop-flip algorithm makes nonlocal moves based on
local decisions that are linked in a specific manner. The
manner chosen is related to the loop-flip algorithm re-
cently proposed by Evertz et al.* to reduce critical slow-
ing down in simulations of the six-vertex model. The for-
mal connection of the six-vertex model with the fermion
(and quantum spin) problem is through the shaded pla-
quettes for each spin assuming only 6 out of the 16 possi-
ble configurations. The main conceptual connection is
through the recognition that the world-line and the six-
vertex configurations!® can be parametrized by closed
loops as a consequence of a zero-divergence property of
the models. In the fermion case, this property is directly
connected with the local conservation of fermions. From
the loop point of view, the difference between two
different world-line configurations must simply be one or
more closed loops as the difference must also satisfy the
zero-divergence condition. It is such differences that the
loop-flip algorithm constructs.

The core of our loop-flip algorithm is the “massless”
case of the six-vertex algorithm proposed by Evertz
et al.’® which uses only “break-up” operations. For each
spin (up or down), the six allowed plaquettes are mapped
onto three new plaquettes that have lines drawn on them.
Since each lattice site belongs to two shaded plaquettes,
these lines (loop segments) are drawn so that each site is
touched by one line. When these lines are connected,
loops form, some of which are very long and wind one or
more times around the temporal and spatial directions.
For each spin, flipping the loop corresponds to changing
electrons on the loop into holes and vice versa. In the
process, the number of electrons can change. This
change occurs when the net temporal winding number as-
sociated with the system changes. If the temporal wind-
ing number changes, a “sign problem” may occur (19).

The existence of just six allowable plaquettes for each
spin does not mean the Hubbard model is equivalent to a
combination of six-vertex models. Several special con-
siderations exist. In (13), the presence of the sign term is
one. As we mentioned above, our use of the loop-flip al-
gorithm can generate negative weights; fortunately, we
found them for only uninteresting cases and then very
rarely. A second consideration is the U term and u term
in the Hubbard model. We take these terms into account
by observing that in their absence the weight (15) factors
into an up and down term, each of which maps onto a
six-vertex model. We apply our loop-flip algorithm to
each of these pieces and then include the v contribution
by modifying the acceptance probability so that the de-
tailed balance condition is satisfied. This modification is
straightforward; our main task is specifying the loop-flip
algorithm.

To construct our algorithm, we first imagine that we
stack the up- and down-spin checkerboards slightly above
one another and focus our attention on blocks whose
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upper and lower faces are the up- and down-spin shaded
plaquettes. (We have 36 allowed local configurations for
each block.) Next, we define the variable ¢, which
species the state of a block b on which the eight-body lo-
cal interaction in (15) is defined. For this variable, we
take a pair of symbols, ¢,,z(¢,1,¢,f ), each of which has
one of the six allowed values of the plaquette. We sym-
bolize these six values by 1, 1, 2, 2, 3, and 3 and define
them in Fig. 2. We then rewrite the Boltzmann weight
(15) in terms of local variables defined on the shaded
blocks as follows:

W(C)=T[w(ds) , (32)
b

w(d,)=uld})u(d)v(di,é)) . (33)

Our task is to generate a Markov process, in which
different configurations are visited with a frequency pro-
portional to the weight (33). This can be done by cycling
a Monte Carlo updating procedure that consists of two
steps:> The first step is the stochastic assignment of a la-
bel to every shaded block, and the second step is a Monte
Carlo move using modified weights associated with these
labels.

In the first step, we assign a label ¢, to each shaded
block with a probability p(¢,|¢,). Here, the label ¢, is a
pair of integers, (1/1},,1/},1 ), each of which may have a value
1, 2, or 3. These labels will be related to decompositions
of a plaquette into line segments. (See Fig. 4.) The prob-
abilities are to be determined so that the detailed balance
condition holds for the overall updating procedure and
the sum rule

S p(Y,le,)=1 (34)
¥,

is satisfied. Generally, this assignment is an overdeter-

1 2 3
o z 7
0 P 1-Pi

0 P 1-Pi

S]]

W

Ps 1-P3 0

P3 1-P3 0

W

FIG. 4. The labeling probability for the algorithm L. In the
top row, the correspondence between labels and loop decompo-
sitions is shown. In the leftmost column, the correspondence
between symbols (1, 1, 2, 2, 3, and 3) and states are shown.
Solid circles stand for particles while open circles for holes.

mined problem, but in the present problem, we can assign
the probabilities uniquely, as we now discuss.

To define these probabilities, we first define a new local
weight

wwb(¢b)5c¢bw(¢b)P(‘/’b|¢b) , (35)

where Cy, is a configuration independent renormalization

constant which is to be determined so that (34) holds. In
the second step of the algorithm, the stochastic updating
of states, a Monte Carlo step is performed using (35) in-
stead of (33). As long as the relationship (35) holds, this
step together with the first step constitutes a single
Monte Carlo move which satisfies the detailed balance
condition.!”

Following the viewpoint of Kawashima and Guber-
natis,!’ the algorithm is characterized by the modified
weights wwb(¢,,) since once we specify them, the proba-

bilistic assignment of the labels, i.e., p(1,|d,), is deter-
mined by (34) and (35). To show this, we define

Dy, (8= 4 (6100 1 (63)0(84,83) (36)
where v(¢},4}) is the same as in (33) and

0 if x=y or x=y,

7 ()= 1 otherwise . (37)

The probability for the labeling procedure can then be
written as

p(y 10, )=pp(¥ildipp(W}ld)) . (38)

For a given spin, the labeling probability p, of one pla-
quette is easily found to be

pp(2I1)=1—pp(3[1)=pp2|T)=1—pp(3|T)=P, ,
pp(312)=1—pp(112)=pp(3|12)=1—p,(112)=P, , (39)
pp(113)=1—pp(2]3)=pp(1]3)=1—p,(2(3)=P; ,

where

_ 1+e™ _1—=e™
- 1+e2‘rt’ P3_ 1___8*27'{ (40)

P,=l(1—e™™), P,

In order to make the simulation effective, it is desirable
to have an updating rule which guarantees that any re-
sulting configuration is an allowed state. This is easy to
do in the present case, since the state which can be
reached by flipping a loop configuration is an allowed
one. Actually, the modified weights (37) are chosen so
that this correspondence holds. In order to explain what
loop configurations are, we define how we construct a
loop: For each shaded plaquette, we connect each corner
site to another corner by a segment as depicted in Fig. 4.
The connected sites form loops. We note that any
configuration reached by flipping a loop is allowed since a
flip of any segment of a loop results in an allowed local
configuration. Flipping a loop means replacing all the
electrons on the loop by holes and vice versa.

If the v term in (35) were not present, we would simply
flip each loop independently with probability 1. In our
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case, with the v term present, each loop is flipped with a
probability

R=1/(1+e™ ™), 41)

where
s%m—,c)—fzi(w—m : 42)

where WV is the total number of particles on the loop, M is
the total number of sites on which there are zero or two
electrons, and L is the length of the loop. We remark
that the flip of one loop can change the value of A for the
other loops. We, therefore, flip loops sequentially, one
after the other. For N =2 and L =4, an example of a
loop flip is shown in Fig. 5.

We remark that any change of the world lines by algo-
rithm P can be realized by algorithm L with a finite prob-
ability. Additionally, any winding number can occur,
and thus the algorithm simulates the grand-canonical en-
semble of the model. We can prove ergodicity and even a
stronger statement that any state which does not violate
local particle-number conservation can be reached with a
finite probability from any other such state in one sweep
Monte Carlo updating. These statements are a conse-
quence of a loop flip corresponding to changing the occu-
pancy on all sites connected by the loop. Conversely, the

difference between a pair of allowed world-line
configurations corresponds exactly to a loop
configuration. Thus, any two allowed world-line

configurations can be transformed in to each other by a
single flip of a loop configuration.

B. The loop-exchange algorithm (algorithm L,)

The loop-flip algorithm described above was an exten-
sion of the algorithm that Evertz et al. applied to the
six-vertex model; however, for the Hubbard model it has
shortcomings which do not exist for the six-vertex model
or a quantum spin system. In particular, when U is large
compared to T, long loops have little chance of being
flipped.!! We can understand this behavior by observing
that long loops decrease the acceptance probability (42)
when U >0. Since we are often interested in the model
with large positive U and small T, this can be problemat-

.

FIG. 5. An example of a loop flip: (a) a configuration with a
single fermion, (b) a possible decomposition resulting in three
loops, and (c) a possible world-line configuration resulting from
the loop flips. Depicted in (c) is a two-fermion configuration
with a temporal winding number of two and a spatial winding
number of one. Between (a) and (c), a sign change occurred.

(b) (c)

ic as it can lead to long autocorrelation times. In addi-
tion, we are also interested in non-half-filled cases. For
them, we also face a similar difficulty of long correlation
times because flipping a loop may change the total num-
ber of particles, and the acceptance ratio (41) may there-
fore be strongly suppressed by the p term in (42).

In order to resolve these difficulties, we developed a
new loop algorithm, the loop-exchange algorithm (algo-
rithm L.,). In this algorithm, two loops which have the
same shape, but different spins, are flipped simultaneous-
ly. In other words, these flips do not change the U term
nor the u term in (42). Inherently, this algorithm is
nonergodic so it must be used with some ergodic algo-
rithm to construct a correct Markov process. In the
present paper, we use algorithm L for this purpose.

We will discuss algorithm L., as a modification of al-
gorithm L. In algorithm L., all 36 configurations of a
block, except two, map uniquely onto a smaller set of la-
bels. The rule for label assignment is straightforward:
First, we draw world lines by following the ordinary rule
described in Sec. IIC. Then, we overlap two plaquettes
and erase all doubly drawn lines, i.e., world-line segments
drawn at the sample place on both the plaquettes. If the
resulting picture has lines that deadend at opposite
corners of the same plaquette, these corners are connect-
ed by a straight line. After doing this for all blocks, we
identify the resulting sets of overlapping world-line seg-
ments with labels and assign these labels with a probabili-
ty of one. This labeling is illustrated in Fig. 6.

The two exceptional cases are those for which the rule
of the label assignment is not unique. These cases are
configurations (2,2) and (2,2). Each can have one of two
labels, which we denote by 1 and 2. Their modified
weights are defined as

0,0(2,2)1=8,[(2,2)]=1,[(2,2)]=1,[(2,2)]=1 (43)

AV A & K7
vV A A — YV
N AWV — 7
7872 W -7
%O % W — %
VKA —~7
XV B A —~7
Z% >%‘Uﬁ=x
72;& >%w5:z

FIG. 6. Correspondence between local states and loop seg-
ments in the algorithm L. The states are depicted in terms of
world-line segments. Solid lines are for down-spin particles and
dashed lines are for up-spin particles.
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(a) (b)

FIG. 7. An example of a loop exchange.

(c)

with all other modified weights, i.e., those @; with the
two exceptional labels but with i not equal to 1 or 2, van-
ishing.

With the specification of all other modified weights as
unity, the definition of the loop-exchange algorithm is
now complete. We also note that once the labels are
chosen, the modified weights for all allowed loop
configurations are equal and the transition probability of
a Monte Carlo attempt is one-half for any loop, no matter
how large U and pu may be. In terms of labeling probabil-
ities, the algorithm L, is characterized by

p[11(2,2)1=p[1/(2,2)]=1—tanh?rt , (44)
p[21(2,2)]=p[21(2,2)]=tanh’rt . (45)

For the other configurations, the labeling probability is 1
or O as described above.

For algorithm L., only an allowed state can be
reached from a flipped loop. Both the up and down
planes are treated simultaneously, whereas in algorithm
L, they are treated independently as far as the loop con-
struction is concerned. In algorithm L., therefore, only
one set of loops exists for the two planes. The construc-
tion rule for the loops is simple: All we do is just connect
the segments defined above, which have a one-to-one
correspondence to the labels. This rule gives connected
loops; no open curves appear. A useful way to view this
is as follows: The plaquettes in the right column of Fig. 6
are the result of an exclusive-or (XOR) operation on the
overlaid plaquettes along the rows to the left. This XOR
operation replaces the overlaid world lines by a lattice
with 0’s of 1’s at the lattice sites. The L., loops connect
the sites with the 1’s, of which there are 0, 2, or 4 per
shaded plaquette. An example of a loop exchange is
shown in Fig. 7 when N =4 and L =3.

IV. RESULTS

In this section, we present our numerical results for the
integrated autocorrelation times (30) associated with the
average energy, electron occupancy (5), and the ¢=m,
static charge-density Tx+ and spin-density T', correla-

tions (4). We will denote these times by 7%

c
v int> TiNtv Tin» and
5 We will also present results for Texp:

In what follows, we will be concerned with various
combinations of the three algorithms described in the
previous sections. One case is the plaquette algorithm P
by itself. Another is the combination of P and L, which
we will refer to as PL. Other symbols, such as L, LL,
and PLL,,, should be understood in a similar fashion.
The application of any combination which includes L re-
sults naturally in a grand-canonical and ergodic simula-
tion, while the application P and L., alone or together re-
sults in a canonical and nonergodic simulation. Al-
though we can force algorithm L to simulate the canoni-
cal ensemble, we did not do this unless otherwise stated.

As we mentioned above, in some cases, especially when
algorithm P was used alone, we were unable to estimate
4 because the 7:,(1) versus I curve did not reach a pla-
teau during the course of our rather lengthy Monte Carlo
runs. In such cases, we took the largest available value
(with still a reasonably large number of bins remaining) as
a practical lower bound on 74. This choice of a lower
bound is justified since all the 7;4(/) versus I curves we
computed, whether they reached the plateau or not, were
nondecreasing functions. In Fig. 8, we show 7i4(/) versus
I curves for a typical example where using algorithm P,
we were forced to take a lower bound, and where using
algorithm PLL ., we reached a plateau. This figure also
illustrates that in some cases we can reduce the auto-
correlation time dramatically by combining P with L and
L.
For most simulations, the length of the Monte Carlo
calculation was 0.25 million Monte Carlo steps (MCS).
In some exceptional cases, where the autocorrelation
times are very long, we performed longer runs.'® In algo-
rithm P, a Monte Carlo step consists of a sweep across all
unshaded plaquettes on which an attempt to flip its
corners is made. In algorithms L and L.,, a Monte Carlo
step means decomposing the whole system into loops and
attempting to flip every loop. When several algorithms
are combined, a MCS consists of one sweep through each
algorithm. For example, in PL, one Monte Carlo step is
one sweep through P and one sweep through L.

In Fig. 9, various autocorrelation times for P and
PLL,, are plotted for fixed value of y=UB/L=0.5,
where L is the lattice extension in imaginary time direc-
tion. From Figs. 9(a)-9(c), we see that for our new algo-
rithm PLL_,, the autocorrelation time is very small, of
order one, in almost all cases. After some initial increase,
it is flat as a function of 1/T and also as a function of U.
Thus, algorithm PLL ., performs very well.

The behavior of the algorithm P, the conventional al-
gorithm, is not as clear. At small 3, where we have per-
formed very long simulations, we see that 7, increases
rapidly as a function of 8. We also noticed that as a func-
tion of U, 7,,, increases rapidly. At larger 8, most of our
(fairly short) runs with algorithm P did not converge, and
we show only lower bounds for 7;,,. It is possible that the
initial increase of 7;,, with B actually continues towards
larger B. Therefore, some of the lower bounds on 7,
could possibly be an order of magnitude below the actual
value.

In short, comparing P and PLL,,, we see that at large



U and small B, the difference in performance between
these algorithms is enormous, being more than 3 orders
of magnitude at U=8. As argued above, there could be
an even bigger difference in performance when B becomes
large.

Figure 9 also shows that our PLL, algorithm is very
effective in reducing the integrated correlation time for
the SDW correlation function. The reason for this is that
we can exchange world lines for an up-spin and a down-
spin electron in either algorithm L and L., without visit-
ing intermediate states with small weights; however, algo-
rithm L., is most effective in this regard as it was
designed to do precisely this. At large U and at low tem-
perature, the typical spatial world-line configuration is
the one where up-spin and down-spin world lines appear
alternatively with small overlap. The overlap is strongly
discouraged by a large value of U. In algorithm P, in or-
der to exchange the positions of two world-lines, we need
intermediate states in which the two world lines overlap
at least partially. We avoid these intermediate states with
the algorithms L and L.,. We have observed strong
SDW ordering of the system by looking at the average

500.0 : .
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FIG. 8. The bin-length length dependence of 74(/) for the
SDW fluctuation for both the P and PLL,, algorithms. (a) A
case where 7{%(l) does not converge (N=32, L =160, U=38,
B=38, and n=0.0). (b) A case where 7:4(/) converges.
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values of T, at g=m To show an example,
T, (m)=0.884(1) at U=8 and B=0.5 for PLL,
whereas it becomes T', (7)=2.000(8) at B=38.

Figure 9(c) for the CDW function sharply contrasts
that of Fig. 9(b) for the SDW function in that a
significant increase in the correlation time does not occur
as the temperature is lowered. (We again emphasize that
the 7;,, displayed for algorithm P are in general lower
bound estimates and are likely to be too small.) In fact,
the correlation time is almost constant for 8> 6 in all six
curves. The difference between P and PLL., is far less
noticeable: the correlation time for P is only a few times
larger than its counterpart for PLL,.. Consistent with
these observations is the fact that CDW order is much
weaker than the SDW order. For example,
T, (m)=0.1281(5) at U=8 and B=0.5 for PLL,

whereas it becomes TX+(ﬂ')=0.003 80(2) at B=S8.

The longest integrated correlation times for PLL ., are
seen in Fig. 9(d) for the average electron number. Since
there are no fluctuations in the particle number in algo-
rithm P, there is no corresponding curves for P for this
quantity. However, even for PLL_,, the fluctuation in
the particle number is very small. The variance in the
particle number is sometimes so small that we could not
obtain a reliable estimate for its correlation time. This
undetermination is why some data points are missing in
the figure, especially in the region of large correlation
times at lower temperatures.

The comparison between T, and 7, in Fig. 9(d) shows
that in most cases the integrated correlation time 7, for
the particle number is nearly as large as the longest mode
correlation time 7.,,. This fact suggests that the longest
mode in PLL ., is the mode in which creation and annihi-
lation of particles are involved. Empirically, the small
variance in the particle number and the long correlation
time associated with charge creation and annihilation ap-
pear closely related. For example, in the case where
N=32,U=8,u=0,1/T =4, and N =32, the square root
of the particle number variance (i.e., one standard devia-
tion) measured by the algorithm PLL_ is 0.02. For
lower temperatures, with the rest of parameters the same,
we were unable to estimate this quantity reliably. How-
ever, the influence of this long mode for relevant physical
quantities may be negligible because the change in this
quantity may be so small that we can effectively consider
it as a constant. This is the case with the long mode asso-
ciated to the average particle number, since the average
values of other physical quantities, such as energy and
static SDW susceptibility, are not as sensitive to particle
number fluctuations so this exponentially small fluctua-
tion cannot appreciably affect the average value of those
quantities. In this sense, the longest mode correlation
time is not necessarily the relevant measure for the com-
putational time, except if we are interested in the longest
mode itself.

On the other hand, although the creation and annihila-
tion of particles are rather rare and cause long 7,,’s in
some cases, we found that it is still important in other
cases to allow them to happen in order to reduce the in-
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tegrated correlation times for quantities of physical in-
terest. To see this, we have performed some simulations
in which all the Monte Carlo attempts for loops whose
winding number is nonvanishing (and therefore may
change the particle number) are rejected. In Table I, we
show the correlation times for these special simulations in
comparison with the grand-canonical simulations. The
result clearly shows the importance of creation and an-
nihilation processes.

As already mentioned, the present algorithm allows
negative sign configurations to occur. We found, howev-
er, the negative sign ratio defined by’

r=(Z,-Z)NZ,+Z_), (46)

where Z, (Z_) is the Boltzmann weight for the subset
of configurations that are positive (negative), is close to
unity for most cases, especially for larger system sizes.
This observation means that the “sign problem” is not a
problem for the new algorithms. In fact, the only cases
for which we found any configurations of negative sign
are the cases where N=32, 4=0.0, U=2, y=0.5, and
B=4, 6, 8, and 10. The values of " for these cases are
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0.9978(6), 0.979(4), 0.964(5), and 0.88(1). At larger values
of U or higher temperatures, we did not observe any neg-
ative sign configurations. For smaller lattices, such as
N=16, we observed a larger number of negative sign
configurations, although they are again just a small frac-
tion of the total. We expect that the negative sign ratio
approaches to unity as the system size becomes large.

The reduction in autocorrelation times brought about
by algorithm L., is most noticeable for the integrated
correlation time for the SDW correlation function. In
Table II, we list the correlation times for various com-
binations of the three algorithms, in the case where
U=4, B=1.5, N=32, and p=0.0, to examine the
efficiency of several combinations. We can see that the
integrated correlation time 75, for the SDW correlation
function for PLL., is about 1 of that for PL. Since we
have not carried out this type of investigation for a
variety of physical parameters systematically, cases may
exist where the efficiency of L, is much more noticeable
than presented here. The reason why the efficiency of L,
is most noticeable in the correlation time for SDW is con-
jectured as follows: As already argued, the integrated
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FIG. 9. The integrated autocorrelation times for (a) energy, (b) SDW fluctuation, (c) CDW fluctuation, and (d) the number of parti-
cles, in the case of N =32, u=0.0, and UB/L =0.5. The double symbols and dashed curves show (most likely poor) lower bounds for
the correlation times, not the correlation times themselves. The curves are computed for several values of U.
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TABLE I. Autocorrelation times for U=8, L =8,1/T=1, N=16, and u=0.

C

~

Algorithm 7'ifnt TiIXt Tint int 1'e:q:o
PL (canonical) > 46 ) 13(2) 60(5) 2
PL (grand canonical) 1.7(2) 0.89(3) 0.81(1) 10.8(9) 19(7)
PLL,, (canonical) >28 0 10.7(1) 1.80(5) 2
PLL,, (grand canonical) 0.99(4) 0.92(2) 0.718(7) 0.509(8) 1.75(5)

2Unable to measure.

correlation time for SDW fluctuations is related to the
exchange of two world lines of opposite spins. Although
we can achieve this exchange through either algorithm P
or L, we inevitably encounter unpleasant intermediate
states in the case of P. Algorithm L may suffer from
similar difficulty because in forming loops in either the
up-spin plane or the down-spin plane it does not use the
information about the configuration in the other plane.
Therefore, in some cases, the attempted movement of the
world line results in larger overlaps between down-spin
world lines and up-spin ones, and the move is improb-
able. On the other hand, the algorithm L., is reasonably
free from this kind of difficulty.

The acceptance ratios of the various algorithms also
shows a wide range of behavior. In Table III, we list the
acceptance ratios for some typical cases. The acceptance
ratio r for one MCS is defined as

[the number of flipped sites]
n X [the number of sites in the system] ’

I

r (47)
where n =2 for Pand n =1 for L and L.,. The integer n
is the number of times a site is flipped in a MCS. For the
algorithm P, this definition is equivalent to the ordinary
acceptance ratio defined as the number of accepted at-
tempts divided by the total number of attempts. The
numbers in Table III are averaged over all the Monte
Carlo steps. We see that the acceptance ratio for P and L
are strongly dependent on B and U and become very
small as the value of U increases. In contrast, the accep-
tance ratio for L, is much less parameter dependent and
only moderately increases to + as U increases.

Some results on the quarter-filled case are presented in
Table IV. In this case, in order to compare the results to
those of the algorithm P on a roughly equal basis, we ad-
justed the chemical potential u for the algorithm PLL.,
so that the resulting average particle number becomes
close to 0.5. The difference between the algorithms is less

TABLE II. Autocorrelation times for U=4, L =12,
1/T=1.5, N=32,and p=0.
Algonthm T‘f" Tilxt Ti?'lt 7ﬁn Texp
I d 102(7) 0 17(1) 45(2) @
L 4.2(3) 1.22(6) 0.73(3) 5.6()5) 10(1)
PL 2.0(2) 1.20(3) 0.63(2) 3.8(1) 5.1(5)
PL., >33 o >5.2 >1.7 @
LL,, 3.1(2) 1.28(4) 0.711(4) 0.60(3) 5.9(8)
PLL,, 1.26(2) 1.28(8)  0.63(3) 0.525(4) 3.4(6)

*Unable to measure.

striking than that in the half-filled case although we can
still see considerable reduction in the correlation time.
We remark that for PLL ., the autocorrelations time for
quarter filling are comparable to those at half filling.
Since the overhead of PLL,,, relative to P, is approxi-
mately a factor of 10 larger, the quarter-filled case is near
a marginal filling where the overhead and the reduction
of correlation time balances.

V. CONCLUSION

We presented two new algorithms for world-line
Monte Carlo simulations of electron systems and demon-
strated their efficiency in the case of the one-dimensional,
repulsive Hubbard model. Their extension to higher di-
mensions is straightforward. The first algorithm, which
we call the loop-flip algorithm, is an extension to fermion
systems of a loop-flip algorithm for a six-vertex model re-
cently proposed by Evertz et al.* Our new algorithm en-
ables us to simulate the grand-canonical ensemble while
the traditional plaquette flip algorithm simulates in the
canonical ensemble. We also found that switching to
grand-canonical simulation often reduces the autocorre-
lation time of the simulation dramatically. The second
algorithm is the loop-exchange algorithm in which up-
spin and down-spin world-line segments exchange their
locations. Since all world-line movement in the loop-
exchange algorithm is unaccompanied by changes in the
chemical potential term or the U term in the Hamiltoni-
an, we expected that this algorithm would be effective
when the long correlation time is due to difficulties in ex-
changing world lines. Consistent with this expectation,
we found that the loop-exchange algorithm is especially
effective in reducing the autocorrelation time of the SDW
correlation function when the value of U is large. These
algorithms generalize the cluster algorithms® recently
developed mainly to reduce long autocorrelation times
accompanying simulations of critical phenomena in clas-
sical spin systems. In contrast to the usual use of cluster

TABLE III. Acceptance ratios for N=32, U/BL =1, and
pn=0.

B Algorithm U=2 U=4 U=8
2 P 0.146 0.071 0.020
L 0.208 0.074 0.012
L, 0.349 0.413 0.478
6 P 0.157 0.081 0.028
L 0.105 0.050 0.014
L, 0.355 0.415 0.471
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TABLE IV. Autocorrelation times for N=16, L =8, and U =8, at quarter filling or nearly quarter

filling.

Algorithm /T (n) That Tint Tt Thnt Texp

P 1.0 0.5 12.4(9) o0 6.8(4) 9.9(5) 2

P 2.0 0.5 22(5) o 8.1(3) 10.6(8) N

P 4.0 0.5 28(2) o0 10.0(7) 11(1) N
PLL 1.0 0.4975(2) 1.12(5) 1.24(6) 0.55(1) 0.514(5) 1.21(3)
PLL,, 2.0 0.4940(6) 1.51(5) 3.3(2) 0.786(9) 0.60(2) 4.0(1)
PLL., 4.0 0.4824(3) 2.0(2) 34(4) 1.49(3) 1.1(1) 35(2)

#Unable to measure.

algorithms, we were concerned with reducing the in-
herently long autocorrelation times that occur in the
world-line method even when the physical system is far
removed from any known finite-temperature phase transi-
tion.

At the lowest simulated temperatures, we observed
reductions of the autocorrelation time, measured in the
units of Monte Carlo steps, as large as 3 orders of magni-
tudes. One MCS in the algorithm PLL,, however, takes
from 8 to 10 times longer in CPU time than one step in
algorithm P so the above reduction of autocorrelation
time gives a reduction in CPU time by a factor as large as
2 orders of magnitude.

The estimates of improved efficiency are cautious ones.
In most cases we were able only to estimate a lower
bound for the autocorrelation times associated with the
plaquette algorithm. It is not unreasonable in some cases
to expect the actual autocorrelation times to be an order
of magnitude larger. Additionally, it should be possible
to improve the efficiency of our implementation of the
loop algorithms. We used a highly optimized code for
the plaquette algorithm but used unoptimized codes for
the loop algorithms. Further, we used ordinary worksta-
tions for all the calculations. Parallelizing these compu-
tations is possible and will most likely be needed when
the present algorithms are applied to more challenging
problems, such as those in higher dimensions.

It is natural to ask about the extensions of the present
methods to higher dimensions and other models. When
one changes the problem, it is perhaps best to ask wheth-
er one should also change the methods. The algorithms
presented were designed for the one-dimensional repul-
sive Hubbard model but can be viewed from the perspec-
tive of a general approach to developing cluster algo-
rithms.!” Tailoring the algorithms, when extended to
other problems, might be possible. Still, the direct use of
our new methods to many other problems is possible.
How efficient this use will be is what needs investigation.
For many cases, their use should be more efficient than
the standard algorithm.

The most obvious extension would be to the two-
dimensional repulsive Hubbard model. The standard
world-line algorithm suffers such severe sign problems in
two dimensions that is often almost pointless to use it.
We have no reason to believe our algorithms reduce the
sign problem. Our best expectation would be the
achievement of a significant enough reduction in the vari-

ances of the measured physical quantities so simulations
could be performed over a limited range of parameters.
Wiese?® has reported the use an extension of the massless
version of the Evertz et al. loop-flip algorithm on the
two-dimensional, free-fermion problem, and the few
high-temperature results he reported show seemingly ac-
curate values for the average electron occupancy even in
the presence of a severe sign problem. When U=u=0
our loop-flip algorithm for fermions reduces to his if we
only attempt to flip one loop at each Monte Carlo step.
The potential effectiveness of these methods for fermions
problems in two or more dimensions, while appearing not
especially promising, needs more study.

Of our two algorithms, the loop-exchange method is
the one most specific to the repulsive Hubbard and relat-
ed models. If U<0, an algorithm, which breaks up
world lines wanting to be on top of one another, would be
more appropriate and should be possible to construct.
For the extended Hubbard model, which has a Coulomb
term between electrons on neighboring sites, an addition-
al specific construct might also be necessary. The loop-
exchange algorithm, because it addresses the hopping
part of the problem, will change little from problem to
problem.

Loop algorithm L, in fact, can be almost directly ap-
plied to the spin-1 quantum spin chains. This applicabili-
ty follows from the similarity the path-integral represen-
tation of the spin- quantum spin system has with spin-
less fermion model.!! Use of these algorithms in two di-
mensions also appears quite direct and desirable. Wiese
and Ying,?! using what turns out to be the massless ver-
sion of the Evertz et al. method, studied the spin-%
Heisenberg antiferromagnet with success, although they
do not report efficiency figures of merit. Recently, we
developed cluster algorithms for spin of arbitrary magni-
tude?? and are in the process of testing these methods.
We will report our results elsewhere.

In closing, we comment that the total temporal and
spatial winding numbers are both physically important.
The total temporal winding number is the total number
of particles and the average of the square of its fluctua-
tions is related to the charge compressibility of the sys-
tem. The average of the square of the fluctuations of the
total spatial winding number is directly related to the dc
conductivity.?> In the conventional world-line Monte
Carlo, i.e., algorithm P, the total winding number of ei-
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ther type is conserved. To estimate the charge compres-
sibility and dc conductivity, we have to do some addition-
al manipulations. In the new algorithms, these manipula-
tions seem unnecessary because the total winding num-
bers of both kinds can change simultaneously, individual-
ly, or not at all. We can see the changes by noting that in
algorithm L flipping a single loop of spatial winding num-
ber w changes the total spatial winding number by w, and
that a loop with any spatial winding number can form
with a finite probability as long as it is ailowed in the size
of the system under consideration. A similar remark can
be made with respect to the temporal winding number.
Therefore, we can directly estimate the above-mentioned
quantities. We have yet to investigate the efficiency of
this possibility because in this paper we were mainly con-

cerned with overall algorithmic issues and development.
An additional important point is that similar possibilities
will also exist for the relevant extension of the loop algo-
rithms to bosons and quantum spin systems.
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