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Abstract. We describe a cluster method for the Ising model. It is based on a new
representation of the model in any dimension, which contains both the bond vari-
ables of the High-Temperature representation and those of the Fortuin-Kasteleyn
clusters, and is similar to the representation in terms of spins and bond variables
which underlies the Swendsen-Wang method. Magnetic fields can be included as
well. The scaling properties of this cluster method are investigated.

1 Introduction

Different representations of the Ising model have been the basis for both
theoretical and computational progress. The Fortuin-Kasteleyn (FK) random
cluster representation [1] provides direct access to correlation functions. The
corresponding joint Edwards-Sokal-Fortuin-Kasteleyn (ESFK) representation
of spins and bonds [2] is the basis for the Swendsen-Wang cluster algorithm
[3].

In this paper we will introduce two new joint representations that con-
nect spins and FK-bonds with the bonds of the exact “High-Temperature”-
representation of the Ising model. All the other representations in terms of
spins and bonds then follow immediately by marginalization. Our bond-bond
representation provides new insight into the FK cluster structure. It also im-
plies a cluster algorithm, in the same way that the ESFK representation
implies the Swendsen-Wang method, and allows the inclusion of a magnetic
field, which is difficult with other schemes.

Existing representations: The Ising model on any graph Λ is expressed by
the partition function

Z =
∑

{s}

e
β
∑

〈ij〉
sisj

, (1)

where 〈ij〉 are the edges in Λ, si = ±1, and β = J
kbT

. For each edge, one can

use the simple algebraic identity [1,2]

e−β eβsisj = e−2β + (1−e−2β) δsisj

=
∑

fij=0,1

[

δfij ,0 e−2β + δfij ,1 (1−e−2β) δsisj

]

, (2)

⋆ Published in “Computer Simulation Studies in Condensed Matter Physics XIV,”
eds. D.P. Landau, et al., Springer 2002, p. 123.
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which introduces new bond variables fij , and one obtains the ESFK repre-
sentation

Z = eβV d
∑

{f}

∑

{s}

∏

〈ij〉

[

δfij ,0 (1 − p) + δfij ,1 δsisj
p
]

, (3)

where V d is the number of edges 〈ij〉 and p = (1 − e−2β). Summing over
spins then gives the Fortuin-Kasteleyn random bond representation

Z = e−βV d
∑

{f}

(e2β−1)nf 2#clusters , (4)

where nf is the number of bond variables that are “on” (fij = 1), and
#clusters is the number of connected clusters of such bonds. This represen-
tation is also the basis for rigorous studies.

Observables can be written purely in bond-representation (so called “im-
proved estimators” in computational language), e.g.

〈sisj〉 = 〈 δ(i and j are in the same cluster) 〉 . (5)

As pointed out by Edwards and Sokal [2], the joint representation (3)
immediately implies the Swendsen-Wang cluster algorithm: Given a configu-
ration {si} of spins, on can generate bond variables fij with the conditional
probabilities following from (3), namely si = sj implies that fij = 1 with
probability p

(1−p)+p
= p, and si 6= sj implies fij = 0, because then only

the first term of (3) contributes. Conversely, given a configuration of bond
variables {fij}, (3) implies that for fij = 1 we have si = sj , i.e., all sites
in a cluster have a common spin value; whereas fij = 0 does not imply any
constraints on the product sisj , i.e., the spin values of different clusters are
independent of each other.

The Swendsen-Wang algorithm iterates these steps [2] and drastically re-
duces critical slowing down [4] in simulations of the Ising and related models.

In the present paper, we will connect representations (1), (3), and (4)
with the exact “High Temperature Representation” of the Ising model. That
representation follows from the simple algebraic identity

eβsisj = cosh β [ 1 + (tanh β) sisj ]

= cosh β
∑

bij=0,1

[

δbij ,0 + δbij ,1(tanh β) sisj

]

, (6)

which introduces another, different, set {bij} of bond-variables. Inserting (6)
into (1) results in the joint representation

Z = (cosh β)V d
∑

{s}

∑

{b}

∏

〈ij〉

[

δbij ,0 + δbij ,1 (tanh β)sisj

]

. (7)

Note that a cluster algorithm using the conditional probabilities of this rep-
resentation would be possible, but would have a bad sign problem, since due
to sisj = ±1 the conditional probability for bij = 1 could be negative.
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Summing over spins in (7), one notes that at each site i only even powers
of si survive, which means that an even number of bonds bij = 1 must meet at
each site. Writing this constraint as “∂b = 0”, we obtain the high temperature
(HT) representation

Z = (cosh β)V d 2V
∑

{b};∂b=0

∏

〈ij〉

[

δbij ,0 + δbij ,1 (tanh β)
]

(8)

(with V the number of sites in the graph), which is an exact representation,
and can be used as the basis for the high temperature expansion in powers
of tanh β. The bonds of the FK representation (4) and the high temperature
representation (8) have up to now been completely unrelated.

2 New joint representation

We start again from a simple algebraic identity,

1 + O t =
∑

b=0,1

δb,0 + δb,1 O t (9a)

=
∑

f=0,1

∑

b=0,1

[δf,1 (δb,0 + δb,1 O) t + δf,0 δb,0 (1 − t)] , (9b)

which introduces two auxiliary variables b and f . This transformation can,
e.g., separate some operator O from its weight t. By applying (9b), with
O = sisj , t = tanhβ, to the joint representation (7) of spins and high-
temperature bonds bij , we obtain our new representation for the partition
function of the Ising model

Z = (cosh β)V d
∑

{s}

∑

{f}

∑

{b}

∏

〈ij〉

[

δfij ,1 (δbij ,0 + δbij ,1 sisj) t

+ δfij ,0 δbij ,0 (1 − t)
]

.

(10)

Now we note that by summing over the bond variables bij and using
(1 + sisj) ≡ 2δsisj

, we obtain

Z = (cosh β)V d
∑

{s}

∑

{f}

∏

〈ij〉

[

δfij ,1 δsisj
(2t) + δfij ,0 (1 − t)

]

≡ eβV d
∑

{s}

∑

{f}

∏

〈ij〉

[

δfij ,1 δsisj
p + δfij ,0 (1 − p)

]

,

(11)

i.e., (9b) contains the identity (2), and we reproduce, bond by bond, the
ESFK representation (3). Thus the bond variables fij in (10) are the same
as the FK bond variables in (3,4) and, equation (10) provides a new joint
representation of the Ising model in terms of spins si, FK-bonds fij and
high-temperature bonds bij.
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We obtain another new representation by summing over spins si in (10).
Again this leads to the constraint ∂b = 0, giving

Z = (cosh β)V d 2V
∑

{f}

∑

{b};∂b=0

∏

〈ij〉

[

δfij ,1 t + δfij ,0 δbij ,0 (1 − t)
]

, (12)

a joint representation in terms of FK-bonds fij and high-temperature bonds
bij . This will be the basis for a new cluster method, introduced below.

Eq. (10), in terms of variables s, f, b, contains all the other representations
we have mentioned. They can be obtained simply by marginalization, i.e.
by summing over the unneeded, so-called “nuisance” variables. Thus (10)
contains the representation (1) in terms of spins si, the FK representation
(4) in bonds fij , the high temperature representation (8) in bonds bij , the
ESFK representation (3) in spins si and bonds fij , the joint representation
(7) in spins si and bonds bij , and the new representation (12) in bonds fij

and bonds bij .

3 Some consequences

The representations (10),(12) imply new relations between Fortuin-Kasteleyn
clusters and High-Temperature clusters.

To start, having representations in terms of different variables means that
thermodynamic quantities can be expressed in several ways. For example, eqs.
(1),(4),(5),(8) imply the known relations (with i, j being neighboring sites)

E = −V d 〈sisj〉 (13a)

= V d −
2

1 − e−2β
〈nf 〉 (13b)

= −
∑

〈ij〉

〈 δ(i, j in same cluster) 〉 (13c)

= −V d tanh β − (
1

tanh β
− tanhβ) 〈nb〉 , (13d)

and thus

〈nb〉 =
e2β + 1

2
〈nf 〉 − V d (e2β − 1) , (14)

where nf , nb are the number of bonds fij = 1, resp. bij = 1. Similar relations
follow from other derivatives of Z.

We can obtain new relations between the two kinds of bond clusters by
considering the conditional probabilities between {f} and {b} which follow
from (12):
Given a configuration of FK-bonds {f}:

if fij = 0, then bij = 0 with probability 1−t
1−t

= 1; (15)

if fij = 1, then any {b} that satisfies ∂b = 0 is equally probable. (16)
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Given a configuration of HT-bonds {b}

if bij = 0, then fij = 1 with probability t
1+(1−t) = t ; (17)

if bij = 1, then fij = 1 with probability t
t

= 1. (18)

These relations imply that high-temperature-clusters are strictly contained
within Fortuin-Kasteleyn clusters. This appears to be a new result connecting
the previously unrelated FK-clusters (corresponding to subsets of regions of
“flipped spins” of the low-temperature expansion) and the clusters of the
High-Temperature representation, in any dimension and at any temperature.
It implies, e.g., that the size of HT-clusters cannot grow faster than that of
FK-clusters.

Most interestingly, we obtain a physical meaning for the geometric clas-
sification of bonds in FK-clusters. Specifically, the HT bonds {b} turn out to
be the “black” and “red” bonds in the classification of Caselle and Gliozzi
[5]. This provides a physical framework to understand why, indeed, just the
black and red bonds suffice to provide the very interesting geometric estima-
tor for a thermodynamic quantity, the specific heat, which was constructed
by Caselle and Gliozzi [5].

4 Cluster algorithm

The Swendsen-Wang algorithm implements the conditional probabilities fol-
lowing from the ESFK joint representation (3), as explained in the introduc-
tion. In the same way, the new joint bond-bond representation (12) implies
a different cluster algorithm, which switches back and forth between con-
figurations {b} of HT-bonds and configurations {f} of FK-bonds, with the
conditional probabilities given in (15–18).

For a specific case, an equivalent cluster-algorithm has been found be-
fore, namely the method which Ben-Av et al. [6] developed for 3-dimensional
Z(2) lattice gauge theory. In fact, that algorithm was the starting point (with
M. Marcu) for our investigation. We noted that it could be seen as a pro-
cedure for the dual of 3d Z(2) gauge theory, namely the high-temperature-
representation of the 3d Ising model, and could then be generalized to any
dimension. Eventually this led us to the new representation (10).

Ben-Av et al. provided an ingenious way to satisfy eq. (16), i.e., to generate
a random bond configuration {bij} with constraint ∂b = 0, and with equal
probability for each allowed configuration. For completeness we provide our
version of this procedure here, with an example in fig. 1.

Since b-clusters are strictly contained within f-clusters (see above), the
construction can be done for each f-cluster separately.

(1) Given an f-cluster (fig. 1a), construct any “spanning tree” (fig. 1b), i.e. a
set of connected bonds reaching all sites of the cluster, without loops. For
the present construction, all spanning trees are equivalent. To construct a
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(a) (b) (c) (d) (e)
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Fig. 1. Example for generating a divergence-free configuration of bonds bij .

spanning tree, start from any site (called the root of the tree), and perform
a breadth-first-search ([7]): Put the initial site into a list. Iterate:
Go through all neighbors of the current site (in any order).
If the neighbor is in the f-cluster and is already contained in the list, use
the bond towards that neighbor for step (2).
If the neighbor is in the f-cluster and is not yet in the list, add it to the
end of the list. (The bond towards that neighbor belongs to the spanning
tree, but we do not actually need to store it now). Mark the site as being
in the list.
Take the next site from the list. Stop when there is no more next site.

(2) The bonds of the f-cluster which are not contained in the spanning tree
correspond to loops of the f-cluster. On each of these bonds, choose bij = 0
or bij = 1 at random with equal probability (fig. 1c). In practice this can
already be done during construction of the spanning tree, step (1). If
there are nl such bonds, then 2nl different choices are possible.

(3) The “zero divergence condition” ∂b = 0 now uniquely fixes the value of
all other bij in this cluster. To evaluate them, work backwards through
the list of sites in the spanning tree, and at each site evaluate bij for the
(one !) bond of the spanning tree which leads to its parent site. (See fig.
1d).

(4) The result is a new b-cluster (fig. 1e). Each choice in step (2) results in
a different b-cluster.

Since this cluster algorithm, based on (12), contains the FK clusters,
one can use the same improved estimators (i.e. observables represented in
bonds fij) as for Swendsen-Wang. Similar to the Swendsen-Wang method,
our algorithm can also be used in a single-cluster version [8]. For single-
cluster algorithms in general, we showed recently that infinite lattices can
be simulated directly [9], by making use of the improved estimator (5). Our
new method can also be used with embeddings of the Ising model in other
systems, like the O(N) model [8,10].
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5 Dynamical critical exponent

We have investigated the dynamical properties of the new algorithm on hy-
percubic lattices Ld with periodic boundary conditions, in d = 2, 3, and 4
dimensions at the critical temperature Tc [11]. We used the regular multi-
cluster version of the algorithm, with 105 – 106 sweeps per lattice size.

For the observables energy, magnetization, susceptibility, and spatial cor-
relation function at distance L/2, we measured the autocorrelation functions
[10] via FFT, and determined their statistical errors by the jackknife pro-
cedure [12]. We fitted the asymptotic behavior as exp(−tMC/τexp), where
tMC is the time separation in units of Monte-Carlo sweeps. In the fits we ne-
glected the covariances of different distances in the respective autocorrelation
function; thus our error-bars will be somewhat underestimated.

We found straight exponential decays (except at very small distances for
observables other than the energy). The decay rate τexp was the same for all
observables, within statistical errors. We determined the dynamical critical
exponent zexp from fits to τexp ∼ Lzexp . Our main aim was to compare the
HT algorithm to Swendsen-Wang, and we employed only moderate system
sizes and statistics. The results for zexp include the statistical errors from the
fits, but no extrapolation of their dependence on the size of the largest lattice
used.

Our results for zexp with the Swendsen-Wang algorithm differ slightly
from the apparently best measurements available for z in the literature [4].
For d = 3 and 4 these measurements are, however, for the exponent of the
integrated autocorrelation times for the energy. They are zexp = zint = 0.26(1)
in d = 2; zint,E = 0.54(2) in d = 3; and zint,E = 0.86(2) in d = 4.

In d = 2 dimensions we found autocorrelation functions indistinguishable
from those of the Swendsen-Wang procedure, apparently due to the self-
duality of the model. As is already known for Swendsen-Wang, they are also
compatible with a logarithmic dependence on L.

In d = 3 dimensions we found a critical exponent compatible with that of
Swendsen-Wang, (and somewhat lower than measured by Ben-Av et al [6]),
with a marginally larger prefactor for autocorrelation times.

In d = 4 dimensions the dynamical critical exponent is close to unity,
noticeably higher than that of Swendsen-Wang, but still far below the value
z ≈ 2 of local updates.

We also used the pure high-temperature representation (8) to perform
local updates, in which we proposed flips of bij on elementary plaquettes.
(Note that with periodic boundary conditions, such local updates suffer from
lack of ergodicity on finite systems, since they cannot generate b-clusters
that completely wind around the lattice.) As expected, we found z ≈ 2, with
autocorrelation times far larger than those of the HT clusters (e.g. τexp ≈ 45
instead of ≈ 3.2 for a 162 lattice).



8 H.G. Evertz, H.M. Erkinger, and W. von der Linden

2

4

8

8 16 32 64 128

τ e
xp

L

d=2

HT: z=0.28(2)
SW: z=0.28(1)
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HT: z=0.65(4)
SW: z=0.61(2)
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HT: z=1.07(5)
SW: z=0.80(4)

Fig. 2. Autocorrelation times and critical exponents z for the magnetization in the
HT cluster algorithm, compared to those for the Swendsen-Wang method. The HT
cluster algorithm corresponds to the upper curves, the SW algorithm to the lower
ones. See text for interpretation of fitted critical exponents z.
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6 Including a magnetic field

The same approach that led to (12) can also be used to include a magnetic
field h. The partition function then contains a term exp(βhsi) for each site,
which we expand similar to the high-temperature representation (6), and to
which we apply (9b):

eβhsi = c [1 + ηsi] (19a)

= c
∑

qi=0,1

[δqi,0 + δqi,1 si η] (19b)

= c
∑

ri=0,1

∑

qi=0,1

[δri,1 (δqi,0 + δqi,1 si) η + δri,0 δqi,0 (1−η) ] , (19c)

with c = cosh(βh) and η = tanh(βh). We have introduced two sets of sources
{qi} and {ri}. If we use (19b) with (6) then we obtain the high tempera-
ture representation with magnetic fields, in which lines of bij = 1 are either
sourceless, like before, or end in sources qi = 1, i.e. the combined constraint
on bonds {b} and sources {q} can be written as “∂b = q”.

Here we use (19c). The product over sites of (19c) multiplies (10). Sum-
ming over spins si will now result in the additional constraint that there has
to be an even number of sources qi = 1 for each f-cluster. Eq. (12) then
becomes

Z = (cosh β)V d 2V
∑

{f}

∑

{b};∂b=q

∏

〈ij〉

[

δfij ,1 t + δfij ,0 δbij ,0 (1 − t)
]

×

× cosh(βh)V
∑

{r}

∑

{q even}

∏

i

[δri,1 η + δri,0 δqi,0 (1−η) ] ,
(20)

with an analogous generalization of (10). Eq. (20) can be used for a cluster
update [13] analogous to the method above, with mappings between {f}
and {b} and additionally with mappings between {r} and {q}, using the
conditional probabilities following from (20), which are analogous to those
following from (12).

We note that our treatment of the magnetic field is equivalent to intro-
ducing a “ghost spin” s0 = +1 in (10),(12), to which every other spin couples
with strength h [3]. Then qi could also be written as a “bond” variable bi0 and
ri as fi0. Thus, if we sum over sources qi in (19c) we recover the Swendsen-
Wang algorithm with ghost spin, which performs well only in a very small
magnetic field, since a single case of qi = 1 in an FK-cluster suffices to freeze
this cluster to the value s0 ≡ +1.

However, in (20) we progress differently. There is no “freezing” of (f, r)
clusters, since spins do not appear in (20), and sources ri and qi can fluctuate
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even in a strong field. Note that summing over bonds {bij} and sources {qi, ri}
in (20) must recover the FK-like representation

Z = e−βV d
∑

{f}

(

e2β − 1
)nf

∏

clusters

(

eβhVcluster + e−βhVcluster
)

, (21)

where Vcluster is the number of sites in a cluster. This expression follows
directly from multiplying (3) with

∏

i exp(βhsi) and summing over spins.
Thus our approach (20) is an auxiliary-variable method to implicitly reweight
the size of clusters.

7 Generic formalism for models with constraints

We can see (9b) as a formalization for “tentative updates” (including situ-
ations with global constraints), i.e., Monte Carlo steps in which some state
b = 1 is proposed (f = 1) with a certain probability t, and performed with
another probability depending on O.

More specifically, we use (9b) to write

tr
∏

i

(1 + Oiti) =

tr
∏

i

∑

fi=0,1

∑

bi=0,1

[δfi,1 (δbi,0 + δbi,1 Oi) ti + δfi,0 δbi,0 (1 − ti)] .
(22)

We now view the {bi} as basic variables, with some trace over “spins” which
may imply a global constraint. Then fi = 1 can be seen as a proposal to allow
bi = 1, and Eq. (22) provides the conditional probabilities for generating {b}
given {f} and vice versa.

One example where this procedure has implicitly been used is the paper by
Ben-Av et al [6]. Another is the cluster method by Rieger and Kawashima [14]
for the Ising model in a transverse field, where a set of sources qi are proposed,
and one realization of sources is later accepted subject to a constraint.

8 Conclusions

We have introduced a cluster algorithm for the Ising model (as well as for
embeddings into other models). It corresponds to switching between config-
urations of Fortuin Kasteleyn bonds and High Temperature bonds in a new
joint representation of the Ising model, which also sheds new light on the
physical meaning of geometric properties of clusters. The dynamic critical
exponent is as good as that of Swendsen and Wang in two and three dimen-
sions, and slightly higher in four dimensions. Magnetic fields can be included
in the procedure in a related way.
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