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Polaronic Aspects of the two-dimensional ferromagnetic Kondo Model
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The 2D ferromagnetic Kondo model with classical corespins is studied via unbiased Monte-Carlo
simulations. A canonical algorithm for finite temperatures is developed. We show that with realistic
parameters for the manganites and at low temperatures, the double-exchange mechanism does not
lead to phase separation on a two-dimensional lattice but rather stabilizes individual ferromagnetic
polarons. A detailed analysis of unbiased MC results reveals that the polarons can be treated as
independent particles. It is found that a simple polaron model perfectly describes the physics of
the FM Kondo model. The ferromagnetic polaron picture provides an obvious explanation for the
pseudogap in the one-particle spectral function Ak(ω) observed in the FM Kondo model.

PACS numbers: 71.10.-w,75.10.-b,75.30.Kz

I. INTRODUCTION

Manganese oxides such as La1−xSrxMnO3,
La1−xCaxMnO3 and La2−2xSr1+2xMn2O7 have been
attracting considerable attention since the discovery of
colossal magnetoresistance (CMR)1,2. These materials
crystallize in the perovskite-type lattice structure where
the crystal field breaks the symmetry of the atomic wave
function of the manganese d-electrons. The energetically
lower t2g levels are occupied and form a localized
corespin with S = 3/2. The eg orbitals are hybridized
with the neighboring oxygen 2p orbitals and electrons
can thereby move from one Mn ion to another. Some
compounds crystallize in structures with well separated
MnO2-(bi)layers, to which the itinerant eg electrons are
confined. The interplay of various physical ingredients
such as the strongly FM Hund coupling (JH) of the
itinerant electrons to localized corespins, AFM Superex-
change of the corespins, Coulomb correlations, and
electron-phonon coupling leads to a rich phase diagram
including antiferromagnetic insulating, ferromagnetic
metallic and charge ordered domains. The dynamics
of the charge carriers moving in the spin and orbital
background shows remarkable dynamical features3,4.

Since full quantum mechanical many-body calculations
for a realistic model, including all degrees of freedom, are
not yet possible, several approximate studies of simplified
models have been performed in order to unravel individ-
ual pieces of the rich phase diagram of the manganites.
The electronic degrees of freedom are generally treated by
a Kondo lattice model5. Electron-electron correlation is
often neglected, because the on-site Hubbard term merely
renormalizes the already strong Hund coupling. For the
Kondo model with quantum spins it is still difficult to de-
rive rigorous numerical or analytical results, especially in
dimensions higher than one. If the S=3/2 corespins are
treated classically, however, the model can be treated by
unbiased Monte Carlo techniques. The validity of this
approximation has been tested in Ref. 6,7,8,9 and it ap-
pears that quantum effects are important for (S=1/2)

corespins or at T = 0. For finite temperature and S=3/2,
classical spins present a reasonable approximation.

Further approximations can be made by taking into
account, that the Hund coupling JH is much stronger
than the kinetic energy. Consequently, configurations are
very unlikely in which the electronic spin is antiparallel
to the local corespin. A customary approach is to take
JH → ∞. This approximation however breaks down for
the almost completely filled lower Kondo band. In the
dilute hole regime, the full Kondo model is governed by
an effective AFM interaction between the corespins due
to excitations into the upper Kondo band. This effect is
completely absent from the JH → ∞ model.

An effective spinless fermion (ESF) model10 has been
proposed to improve upon the JH → ∞ limit. In this
model, virtual excitations account for effects of configu-
rations, where the itinerant electron spin is antiparallel
to the local corespin. It has been demonstrated that the
results of the ESF model are in excellent agreement with
those of the original Kondo model even for moderate val-
ues of JH.

Elaborate Monte Carlo (MC) simulations for the FM
Kondo with classical t2g corespins in various dimensions
have been performed9,10,11,12,13,14,15,16,17,18,19,20 in order
to unravel the physical properties of the DE model. For
a review see for example Ref. 14 and references therein.
A two-dimensional Kondo lattice model for manganites
has been thoroughly investigated in Ref. 20 by means of
MC calculations similar to ours and by analytical energy
comparison of several phases. Using a relatively high
value for the antiferromagnetic exchange coupling and
infinite Hund’s rule coupling JH → ∞, Aliaga et al find
PS, stripes, island phases for commensurate fillings, and
a so called “Flux phase” on the two-dimensional lattice.
By island phases, the authors mean small ferromagnetic
domains that are stacked antiferromagnetically. In a 2D-
Kondo model applied to cuprates, stripes and a pseudo-
gap are observed in MC simulations21,22,23.

Many of these studies revealed features, e. g. an infinite
compressibility near the filled lower Kondo band, which
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have been interpreted as signature of PS. PS has also
been reported24 from computations based on a dynamical
mean field treatment based on the DE model at T = 0.
In previous MC studies10,18 for the DE model with classi-
cal core spins for 1D systems, we had obtained numerical
data comparable to those reported in Ref. 9,11,12. A de-
tailed analysis of the data revealed19 however, that the
aforementioned model with the standard parameter set,
relevant for the manganites, favors individual polarons
over phase separation. Other authors also found ferro-
magnetic polarons for the almost empty lower Kondo
band (i. e. very few electrons) for S=1/2 corespins25,26,
for the 1D AF Kondo Model with few electrons27, and for
the 1D paramagnet at higher temperatures28. In Ref. 29,
small ferromagnetic droplets were predicted from energy
considerations.

In this paper, we present a numerical study of the 2D
ferromagnetic Kondo model with classical corespins. As
in 1D, we find that the correct physical interpretation of
the features which have been interpreted as PS is rather
given by ferromagnetic polarons, i.e. small FM-regions
with one single trapped charge-carrier. The polaron pic-
ture allows also a straight forward and obvious explana-
tion of the pseudogap, which has been previously ob-
served in the spectral density in experiments30,31,32,33

and MC simulations10,14. Experimental evidence for
small FM droplets in low doped La1-xCaxMnO3 is re-
ported in Ref. 34,35.

This paper is organized as follows. In Sec. II the model
Hamiltonian is presented and particularities of the MC
simulation for the present model are outlined. A canon-
ical algorithm is introduced. In Sec. III, we introduce a
simplified model of ferromagnetic polarons embedded in
an AFM background and present results for this model.
In Sec. IV, these results are compared to unbiased Monte
Carlo simulations of the 2D ferromagnetic Kondo model
with classical corespins at realistic parameter values. The
key results of the paper are summarized in Sec. V.

II. MODEL HAMILTONIAN AND UNBIASED
MONTE CARLO

In this paper, we will concentrate solely on properties
of the itinerant eg electrons interacting with the local t2g
corespins. We also neglect the degeneracy of the eg or-
bitals. The degrees of freedom of the eg electrons are
then described by a single-orbital Kondo lattice model18.
As proposed by de Gennes36, Dagotto et al.9,14 and Fu-
rukawa15, the t2g spins Si are treated classically, which
is equivalent to the limit S → ∞. The spin degrees of
freedom (S) are thus replaced by unit vectors Si, param-
eterized by polar and azimuthal angles θi and φi, respec-
tively. The magnitude of both corespins and eg-spins is
absorbed into the exchange couplings.

A. Effective Spinless Fermions (ESF)

It is expedient to use the individual t2g spin direc-
tion Si as the local quantization axis for the spin of the
itinerant eg electrons at the respective sites. This rep-
resentation is particularly useful for the JH → ∞ limit,
but also for the projection technique, which takes into
account virtual processes for finite Hund coupling. As
described in Ref. 10, the energetically unfavorable states
with eg electrons antiparallel to the local t2g corespins
can be integrated out. This yields the 2D effective spin-
less fermion model (ESF)

Ĥ = −
∑

<i,j>

t↑↑i,j c
†
i cj −

∑

i,j

t↑↓i,j t
↓↑
j,i

2JH
c†ici + J ′

∑

<i,j>

Si · Sj .

(1)

The spinless fermion operators cj correspond to spin-up

electrons (relative to the local corespin-orientation) only.
The spin index has, therefore, been omitted. With re-
spect to a global spin-quantization axis the ESF model (1)
still contains contributions from both spin-up and spin-
down electrons.

The first term in Eq. (1) corresponds to the kinetic en-
ergy in tight-binding approximation. The modified hop-

ping integrals tσ,σ
′

i,j depend upon the t2g corespin orien-
tation

tσ,σ
′

i,j = t0 u
σ,σ′

i,j , (2)

where the relative orientation of the t2g corespins at site i
and j, expressed by the angles 0 ≤ ϑ ≤ π and 0 ≤ φ < 2π,
enters via

uσ,σi,j (S) = cicj + sisje
i(φj−φi) = cos(ϑij/2) eiψij

uσ,−σi,j (S) = cisje
−iφj + sicje

−iφi = sin(ϑij/2) eiχij

(3)
with the abbreviations ci = cos(ϑi/2) and si = sin(ϑi/2).
These factors depend on the relative angle ϑij of
corespins Si and Sj and on some complex phases ψij and
χij . For certain spin structures, an electron may obtain
a different phase depending on the path taken from one
lattice site to another. An example of such structures is
the so called Flux phase20,37,38.

The second term in Eq. (1) accounts for virtual hop-
ping processes to antiparallel spin–corespin configura-
tions and vanishes in the limit JH → ∞. The ESF model
thus takes into account virtual hopping resulting from fi-
nite JH in the Kondo model in a similar manner as the
tJ-model includes virtual hopping for finite U in the Hub-
bard model. The last term is a small antiferromagnetic
exchange of the corespins.

The hopping strength t0 will serve as our unit of energy.
JH is usually taken to be of the order of magnitude of 4t0
to 8t0, and J ′ of the order of t0/100.
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B. Grand Canonical Treatment

We define the grand canonical partition function as

Z(µ) =

∫

D[S] trc e−β(Ĥ(S)−µN̂)

∫

D[S] =

L
∏

i=1

(

∫ π

0

dθi sin θi

∫ 2π

0

dφi

)

,

(4)

where trc indicates the trace over fermionic degrees of
freedom at inverse temperature β, N̂ is the operator for
the total number of eg electrons and µ stands for the
chemical potential. Upon integrating out the fermionic
degrees of freedom, we obtain the statistical weight of a
corespin configuration S given the chemical potential µ,
which can be written as

w(S|µ) =
trc e−β(Ĥ(S)−µN̂)

Z(µ)
. (5)

Equation (4) is the starting point of Monte Carlo sim-
ulations of the Kondo model9 where the sum over the
classical spins is performed via Markov chain importance
sampling. The spin configurations S are sampled with
the probability given by the weight factor w(S|µ), which
is computed by exact diagonalization of the correspond-
ing one-particle Hamiltonian in Eq. (1).

Motome and Furukawa39 suggested to replace the full
diagonalization by an expansion in Chebychev polyno-
mials. The cpu time then scales with the system size L
as O(L2 log(L)) instead of O(L3) as for the full diago-
nalization and the algorithm can be easily parallelized.
We found, however, that on single processors the full di-
agonalization can be accelerated to be faster than this
approach up to system sizes of 103 lattice sites, while
both algorithms would be too slow on present day’s pro-
cessors for larger systems. For a faster full diagonaliza-
tion, the key is to exploit the structure of the Hamilto-
nian: The lattice sites are relabeled in order to obtain
a band matrix with as few diagonals as possible. Since
this is only an alternative assignment of the linear index
to the two dimensional lattice vector, one does not intro-
duce any approximation or error. Fast library routines
for band matrices can then be used. Since we did pa-
rameter studies, we did not program a parallel algorithm
but instead ran the whole calculation on each cpu with
a different parameter set. Recently, an O(L) algorithm
has been proposed by the same authors, which reduces
the numerical effort by approximating the matrix-vector
multiplication17.

In the 2D case we have employed MC updates in which
single spins were rotated. The angle of rotation was opti-
mized to keep the acceptance high enough. From time to
time a complete flip Si → −Si was proposed. The skip
between subsequent measurements was chosen to be 50
to a few hundreds of lattice sweeps reducing autocorrela-
tions to a negligible level. We have performed MC runs
with some hundreds to 2000 measurements on a 12 × 14

lattice. This geometry was chosen to reduce finite size
(closed shell) effects observed on a square lattice. The
number of measurements was higher for calculations in
the polaronic regime, where the particle number fluctu-
ates strongly, in order to have sufficient measurements
for each filling.

As previously shown18, the spin-integrated one-particle
Green’s function in global quantization can be written as

∑

σ

≪ aiσ; a
†
jσ ≫ω=

∫

D[S] w(S|µ)u↑↑ji (S) ≪ ci ; c
†
j ≫S

ω ,

(6)

where ≪ ci ; c
†
j ≫S

ω is the Green’s function in local spin
quantization. It can be expressed in terms of the one-
particle eigenvalues ǫ(λ) and the corresponding eigenvec-
tors ψ(λ) of the Hamiltonian Ĥ(S):

≪ ci ; c
†
j ≫S

ω=
∑

λ

ψ(λ)(i) ψ∗(λ)(j)

ω − (ǫ(λ) − µ) + i0+

It should be pointed out that the one-particle density of
states (DOS) is identical in global and local quantization;
for details see Ref. 18.

C. Canonical Algorithm

Since there is a jump in the electron density at the crit-
ical chemical potential (shown later in Fig. 5), some elec-
tron fillings cannot be examined with the grand canon-
ical algorithm, and we therefore developed a canonical
scheme. In Ref. 20, canonical calculations were done by
computing the eigenenergies for each corespin configura-
tion and then filling the available electrons into the low-
est levels. This method does, however, not account for
thermal particle-hole excitations around the Fermi en-
ergy. When several states have similar energy, these may
become important.

On the other hand, an exact approach would mean
calculating the Boltzmann weight for every possible dis-
tribution ofNel particles on L energy levels and summing
over their contributions. Even for small lattice sizes L,
this clearly becomes too demanding for more than a few
electrons or holes. Instead, we took into account just the
lowest excitations of the Fermi sea by filling N0

el < Nel
electrons into the N0

el lowest states and considering only
the distributions of the Nel−N0

el remaining electrons on
the states around the Fermi energy. Usually, it is suffi-
cient to take Nel −N0

el ≈ 5. The weight for the corespin
configuration S then depends on the particle number in-
stead of the chemical potential:

w(S|Nel) =

∑

P̃ e−βĤ(S,P̃(Nel))

Z(Nel)
, (7)

where P̃ denotes these restricted permutations.
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Although this is more time-consuming than the grand
canonical calculation of the fermionic weight, the ad-
ditional consumption of computer time is small com-
pared to the time needed for the diagonalization of the
one-particle Hamiltonian. The particle-hole excitations,
which are thus included, can be crucial when examining
competition between phases with and without a pseudo-
gap.

A MC update - especially a complete spin flip - may
lead to a configuration which is very unlikely to occur at
the given particle number, although it may be a good con-
figuration for a different filling. A later MC move might
then lead back to the original particle number, and these
moves should improve autocorrelation. We therefore al-
low density fluctuations within a set of four to five parti-
cle numbers. In order to spend a comparable number of
MC steps at each filling, prior weight factors g(Nel) were
introduced and adjusted in a prerun, giving

w(S) =

Nmax
∑

Nel=Nmin

w(S|Nel) · g(Nel) . (8)

The sum is taken over the set of allowed particle num-
bers Nmin ≤ Nel ≤ Nmax and w(S|Nel) is calculated
according to eq. 7.

When evaluating observables for fixed electron num-
ber, one has to calculate the expectation value

〈 O 〉Nel
=

∑

S O(S)Nel
· w(S|Nel)

∑

S w(S|Nel)
, (9)

which can be rewritten as

〈 O 〉Nel
=

∑

S O(S)Nel

w(S|Nel)
w(S) · w(S)

∑

S
w(S|Nel)
w(S) · w(S)

, (10)

Configurations S occur in the Markov Chain with prob-
ability proportional to w(S); when the sum is taken over
the configurations produced by the MC run, the expec-
tation value therefore becomes

〈 O 〉Nel, MC =

∑

S,MC O(S)Nel

w(S|Nel)
w(S)

∑

S,MC
w(S|Nel)
w(S)

. (11)

III. FERROMAGNETIC POLARON MODEL

Near half filling of a single eg band, a tendency toward
phase separation has been reported in various computa-
tional studies9,11,12,24.

In most cases, the existence of phase separation is in-
ferred from a discontinuity of the electron density as
a function of the chemical potential. At the critical
chemical potential where this discontinuity is found, it
is claimed that the system separates into FM domains
of high carrier concentration and AFM domains of low
carrier concentration.
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FIG. 1: Idealized spin and hole-density configuration for the
groundstate of a FM polaron of Lf = 5 lattice sites, embedded
in an AFM background. Empty (filled) squares represent spin
down (up). Height represents hole density.
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FIG. 2: Contribution of the idealized ferromagnetic polaron to
the one-particle spectral function. For visibility, the δ-peaks
have been broadened to a width of 0.2.

We have already shown that for a 1D system this pic-
ture is in general incorrect19. In fact, what happens is
that each single hole is dressed by a ferromagnetic cloud
in which it delocalizes. The system can be well described
by free quasiparticles consisting of a single hole plus a
local (three to four-sites for 1D, 5 sites for 2D) ferro-
magnetic well embedded in an AF background. Each of
these added quasiparticles gains the same energy, which
is exactly balanced by the energy to be paid for the criti-
cal chemical potential µ∗. Hence the discontinuity of the
particle number at low temperatures.

Here we show that ferromagnetic polarons, i.e. single

charge carriers surrounded by small ferromagnetic spin-



5

clouds, are indeed formed when holes are doped into a
completely filled lower Kondo band in 2D. In this section
we discuss the properties of idealized two dimensional
model polarons, whereas in the next section we compare
our polaron-model to unbiased Monte Carlo results.

A. One single polaron

As reference configuration we consider the completely
filled lower Kondo band where super exchange and
the contribution from the virtual hopping process, see
Eq. (1), give rise to an antiferromagnetic corespin pat-
tern. The smallest defect in a completely antiferromag-
netically ordered 2D lattice is the flipping of one single
spin. Then a five-site ferromagnetic region forms. If we
introduce a hole into the system, it can delocalize in this
region because of the double-exchange mechanism. As
there is no double-exchange hopping between sites with
perfectly antiferromagnetic spins, the hole is trapped in-
side the ferromagnetic region. In this simple model, the
hole can hop from the central site of this region (site 1)
where the spin has been flipped, to all nearest neighbors
(sites 2–5). The tight-binding Hamiltonian describing
this situation reads

Hhole = −tf











0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0











,

with the hopping between ferromagnetic sites tf in this
model. Since the Hamiltonian is symmetric with respect
to rotations by π/2, the ground state should also show
this property and can thus be found in the space spanned
by (1, 0, 0, 0, 0), (0, 1/2, 1/2, 1/2, 1/2), where the Hamil-
tonian reads

Hhole = −tf
(

0 2
2 0

)

.

The delocalization energy of the hole is thus given by
ǫhole = −2 tf. This energy can be gained as a hole
delocalizes in the ferromagnetic domain. The ground
state 1/

√
2 (1, 1/2, 1/2, 1/2, 1/2) has the hole density de-

picted in Fig. 1. Excited states are found at ǫ = +2 tf
and ǫ = 0. The highest state at ǫ = +2 tf is given
by 1/

√
2 (−1, 1/2, 1/2, 1/2, 1/2) and does also have s-

symmetry, while the states at ǫ = 0 have p- and d-
symmetry. They appear in the one-particle spectral func-
tion of the configuration shown in Fig. 2.

To create such a ferromagnetic domain, however, four
antiferromagnetic bonds have to be broken. This costs
the energy of 2 × 4 Jeff. Near the completely filled lower
Kondo band x = 0, the total antiferromagnetic exchange
coupling is approximately given by Jeff = 1/(2JH) + J ′,
see Ref. 19. The energy gained by adding one hole to the
system thus reads

ǫpol = −2 tf + 8Jeff (12)
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FIG. 3: Representative hole-density configuration for 10 (left)
and 20 (right) holes in the simplified polaron model on a 12×
14 lattice (x ≈ 0.12). The holes are located where one spin
is flipped from the AFM reference configuration. The results
correspond to β = 50, J ′ = 0.02, JH = 6. Colors are for better
visibility.

FIG. 4: Spectral density of the polaron model for 20 holes on
a 12× 14 lattice (x ≈ 0.12), using the same parameter values
as Fig. 3.

When the chemical potential approaches −ǫpol from
above, holes start to enter the system forming individ-
ual polarons. Therefore, the critical chemical potential
is given by µ∗ = −ǫpol.

Up to a certain concentration, these holes can be
treated as free fermions which all have the same energy
ǫpol. The energy may, however, depend on the tempera-
ture if tf or Jeff do. The more obvious temperature effect
is the smearing of the discontinuity in the electron filling
at higher temperatures, which results from the applica-
tion of the Fermi-Dirac statistics to these quasiparticles.

B. Results for a small number of polarons

In this subsection we push our polaron ideas further
to treat the case of a small number of holes in an AFM
background. To this end, we perform a simple simu-
lation. We start with a perfect AFM reference config-
uration. We then add Nholes holes by flipping Nholes

randomly chosen spins, excluding flipping a spin back.
Finally, we add random deviations to each corespin in
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FIG. 5: Electron density y as a function of the chemical po-
tential µ of a 14×12 lattice for β = 50, J ′ = 0.02 and JH = 6.
Circles indicate MC results, the solid (dashed) line shows the
free fermion results for the fitted (estimated) energy.

order to account for thermodynamic fluctuations. These
fluctuations lead to a finite DE hopping amplitude in the
AFM band and their size is therefore fitted to match
the bandwidth observed in the MC results, see sec.
IV. We then diagonalize the resulting ESF-Hamiltonian
and compute observables in the canonical ensemble with
Nel = Nsites −Nholes = Nsites −Nflipped spins as explained
in sec. II C. The observables are averaged over many
such configurations. Typical hole-density configurations
are depicted in Fig. 3 for 10 and 20 holes, i. e. 10 resp.
20 spins were flipped from the initial perfect AF configu-
ration. In the formulae for the ESF-Hamiltonian and the
observables, the parameters were set to β = 50, J ′ = 0.02
and JH = 6. It should be emphasized that the probabil-
ity distribution used in choosing the spins to be flipped
is completely flat. It is only ensured that exactly Nholes

spins are flipped from the AFM reference configuration.
The chosen parameter values therefore do not influence
the obtained spin configurations.

As an example for observables calculated in this pure
polaron model, we show the one-particle spectral func-
tion for 20 holes in Fig. 4. The center is occupied by
the AFM tight-binding band with a mirror band due to
the doubling of the unit cell in the AFM spin configu-
ration. At ω = ±2, the polaronic states can be clearly
seen. In addition to them, one sees a number of weaker
signals in the vicinity of ω = ±2. These stem from larger
ferromagnetic regions, i. e. from contiguous polarons.

IV. UNBIASED MC RESULTS

In this section we present results of unbiased Monte
Carlo simulations for J ′ = 0.02 and JH = 6 and show that
they correspond to independent ferromagnetic polarons.

Figure 5 shows the electron density as a function of
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FIG. 6: MC snapshot of the hole density for 10 (left) resp. 20
(right) holes in a 14× 12 lattice at β = 50, J ′ = 0.02, JH = 6.

the chemical potential at β = 50. Depending on the
value of the hopping parameter t0, this is in a range of
50K − 100K , i. e. relevant for experiments. There is a
discontinuity in the density (infinite compressibility), but
one observes that the electron number does not drop at
once from 1 (AFM) to 0.8 (FM). Instead, it first decreases
only slowly from the completely filled band, the slope
of the curve then becomes gradually steeper until it is
vertical. For a qualitative description of the MC results
by the polaron model, we use tf = t0 and Jeff = 1/(2JH)+
J ′ which yields a polaron energy of ǫpol ≃ −1.17. Using
this value for the critical chemical potential we obtain
the dashed line. Although it is shifted by some constant
energy, it already correctly reflects the trend in the Monte
Carlo data. Much better agreement can be found by
fitting the polaron energy to the Monte Carlo data. In
our case we obtain ǫpol ≃ −1.14. The corresponding
Fermi function is shown as the solid line.

Fig. 6 shows MC snapshots with 10 and 20 holes.The
polarons can be clearly seen, 10 polarons for 10 holes and
19 polarons for 20 holes. Only the 20th hole at the larger
doping is delocalized. There is an obvious similarity to
the idealized polaron model, see Fig. 3.

As in the one-dimensional case, the polarons induce
separate states in the one-particle density of states
(DOS), as described in sec. III. Figure 7 shows the DOS
in the case of one hole in a 14×12 lattice at various tem-
peratures. One observes a broad peak in the center and
two polaronic peaks at ±2 that are separated by a pseu-
dogap. The pseudogap observed in the Kondo model
is thus a direct result of the FM polarons. The broad
central peak is due to holes moving in the not quite per-
fectly antiferromagnetic background. As a result of the
super exchange term in the Hamiltonian, it is centered
around ǫ = −z/(2JH) with z = 4 in the 2D square lat-
tice. When no hole is in the system, this peak also shows
up and is then the only feature of the DOS. The width
of the peak is mainly dominated by corespin fluctuations
around the completely ordered state. Consequently the
width decreases with decreasing temperature. This leads
to a wider pseudogap at lower temperatures, as depicted
in Fig. 7.

The polaronic peak, on the other hand, remains largely
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FIG. 8: Doping dependence of the one-particle DOS for J ′ =
0.02, β = 50, JH = 6.

unaffected by temperature. As can be seen in the inset of
Fig. 7, its shape is virtually constant. Upon introducing
more holes (see Fig. 8), the weight of the polaronic peaks
increases whereas their position and the shape of the cen-
tral band remain unaffected. The weight of the polaronic
peaks corresponds to the number of holes. The shape of
both the antiferromagnetic band and the polaronic peaks
only begins to change when a large number of holes are
added, so that the probability for overlapping polarons
becomes considerable. With 5 sites per polaron, 20 po-
larons would take 100 sites, or 60% of a 14 × 12 lattice,
therefore connected polarons and disturbances of the AF
background are to be expected. It is therfore impressive
that even with 20 holes, the polarons seem to remain
largely independent.

Fig. 9 shows the spectral density for the ESF model

FIG. 9: Spectral density for J ′ = 0.02, β = 50, JH = 6 and
six holes (x ≈ 0.035) on a 12 × 14 lattice: Polaronic states in
addition to the AFM band.

FIG. 10: Spectral density for J ′ = 0.02, β = 50, JH = 6 and
20 holes (x ≈ 0.12) on a 12 × 14 lattice.

with JH = 6, J ′ = 0.02, β = 50 and 6 holes. In addition
to the central band, the polaronic states can be seen at
energies slightly below ±2, in perfect agreement with the
simple polaron model, see Fig. 2. The states at ω ≈ 0
are lost within the AFM band. Fig. 10 shows the results
for 20 holes (x ≈ 0.12). Compared to the results for the
simple polaron model in Fig. 4, the structures are slightly
smeared, but the similarities are striking.

In order to verify that the addition of holes leads pri-
marily to more small polarons rather than to a growth of
the existing ones, we use a dressed corespin correlation
function

Sh(~r) =
1

L

∑

~i

nh~i S~i · S~i+~r . (13)

Where nh~i is the hole density at site ~i related to the elec-

tron density via nh~i = 1 − n~i, the sum over ~i is taken

over all lattice sites. This dressed correlation measures
the ferromagnetic regions around holes. Fig. 11 shows
the results for 1, 6 and 20 holes on 12 × 14 sites, which
correspond to doping levels of x = 0.006, x = 0.036,
and x = 0.12. The results are almost independent of the
doping level x and, above all, the ferromagnetic region
does not grow with increasing hole density. The data
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FIG. 11: Dressed corespin correlation Eq. (13) for J ′ = 0.02
from unbiased MC Data for 1 (◦), 6 (×) and 20 (▽) holes.
Continuous lines are data for the simple Polaron model (see
sec. III): 1 Polaron (dotted), 6 (solid) and 20 Polarons
(dashed). The inset shows the corespin correlation S(~r) =
1

L

∑

~i
S~i

· S~i+~r
. The MC Simulations were done for JH = 6,

β = 50 on a 12 × 14 lattice.

are compared to those obtained for the independent po-
laron model introduced in sec. III and show very good
agreement. The inset of Fig. 11 shows the usual corespin
correlation which reveals the AFM background. The an-
tiferromagnetism decreases with increasing hole concen-
tration, both for the MC simulations and the idealized
polaron model. However, it shrinks somewhat faster for
the full ESF model.

The MC results for 1 and 6 holes were obtained from a
grand canonical simulation evaluated in subspaces with
constant particle number; the results for 20 holes were
calculated with the canonical algorithm introduced in
sec. II C, because this doping can not be stabilized in
the grand canonical ensemble, see Fig.5.

V. CONCLUSIONS

In this paper, the ferromagnetic Kondo (double-
exchange) model in 2D has been analyzed by unbiased
finite temperature Monte-Carlo simulations. It has been
found that upon hole doping, small ferromagnetic regions
appear around each individual hole while the rest of the
lattice stays antiferromagnetically ordered. Each of the
ferromagnetic regions contains one single hole. There-
fore, the physics close to half filling is not governed by
phase separation into larger FM and AF regions, as previ-
ously reported, but by single-hole ferromagnetic polarons
moving in an antiferromagnetic background.

The critical chemical potential µ∗ at which holes start
to enter the lower Kondo band can be found from sim-
plified energy considerations (Eq. (12)). For µ signifi-
cantly above µ∗, the band is completely filled and the

corespins are antiferromagnetic. Around µ∗, holes enter
the eg-band, forming isolated FM domains in the shape
depicted in Fig. 1, each containing one single hole. This
is corroborated by MC snapshots, the functional depen-
dence of the electron density on the chemical potential,
the spectral density and the dressed corespin correlation
Eq. (13).

The discontinuity in the electron density vs. the chem-
ical potential (i. e. infinite compressibility) is usually
taken as evidence for PS. In the case of the Kondo model,
this discontinuity is a consequence of a large (macro-
scopic) number of degenerate polaron states. When the
chemical potential is close to the energy of these states,
the number of holes (polarons) in the lattice strongly fluc-
tuates. The weight of the polaron peak in the spectrum
is directly linked to the number of holes (Fig. 8). In or-
der to obtain numerical results at a fixed hole number,
it was necessary to develop a canonical algorithm for our
Monte Carlo simulations.

Another consequence of the formation of single-hole
FM polarons is the opening of a pseudogap. The small
FM regions of the polarons contain only a few electronic
states that are energetically well separated from each
other. Moreover, the width of the antiferromagnetic band
is much smaller than the difference between the highest
and the lowest polaron states. Therefore, no states can
be found for energies between the upper edge of the anti-
ferromagnetic band and the highest state within the po-
laron. This gives rise to a pseudogap in the one-particle
spectral function. The same arguments explain the ap-
prearance of a mirror gap well below the chemical poten-
tial.

A pseudogap is indeed observed in experiments30,31,32

and in MC simulations for the Kondo model10,14. If there
were larger FM clusters, however, they would give rise
to additional states at the energies of the pseudogap.
The gap would disappear. Experiments at low doped
La1−xCaxMnO3 showed evidence of small FM droplets
in an AFM background34,35.

Our analysis yields compelling evidence against the PS
scenario and in favor of FM polarons in 2D for realis-
tic parameter values for manganites. A similar behavior
has been previously found for 1D. Furthermore, the cou-
pling to lattice degrees of freedom will additionally lo-
calize holes and inhibit the formation of a ferromagnetic
phase (Jahn-Teller polarons)6,40. It should be noted that,
depending on the value of the hopping parameter t0, the
temperature investigated in this paper (β = 50) is in a
range of 50K − 100K, which is in agreement with tem-
peratures in experiments.
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