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Finite-temperature investigation of quarter filled ladder systems
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Abstract

We investigate charge ordering in a quarter-filled ladder at finite temperature by determinantal Quantum Monte
Carlo. The sign problem is moderate in a wide range of model parameters relevant for NaV2O5. The charge order
parameter exhibits a crossover as a function of inverse temperature β on finite systems. Above a critical nearest
neighbor Coulomb repulsion Vc, the correlation length grows exponentially with β, indicative of the ordered phase
at β = ∞. We find a clear single-particle gap manifesting itself in a flat n(µ) dependence at large nearest neighbor
Coulomb repulsion V .
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The inorganic ladder compound NaV2O5 has at-
tracted great attention in recent years. This interest
was triggered by magnetic susceptibility measurements
[1], which show a phase transition at T = 34K into a
low-temperature spin-gapped phase. This transition is
accompanied by charge ordering, as observed in NMR
measurements [2], where the valence of the vanadium
sites changes from V4.5 to V4.5±δ, with δ the amount of
charge disproportion. This transition has been studied
theoretically by several techniques at T = 0 [3].

On a microscopic level the system can be described
by an extended Hubbard model

H = −
∑

〈ij〉,σ

tij(c
†
iσcjσ + H.c.) + U

∑

i

ni↑ni↓

+ V
∑

〈ij〉

ninj − µ
∑

i

ni, (1)

at quarter filling 〈n〉 = 0.5, with hopping matrix ele-
ments tij = tx along the ladder and tij = ty within a
rung, and chemical potential µ. We state all energies
in units of ty . These hopping parameters as well as the
onsite Coulomb interaction can be extracted from first-
principle calculations [4]. The hopping along chains
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tx ≃ 0.5ty is weaker than along rungs. This strongly
influences the physics of the ladder, for which a spin-
gap seems to appear at tx

>
∼ty [3].

We used tx = 0.5 and U = 8. Since the non-local
Coulomb interaction V cannot be determined properly
by band-structure calculations, we used V as a free pa-
rameter of the Hamiltonian. The charge order param-
eter is ∆2

co = 1
2L〈n〉

∑
ij

eiQ(ri−rj )(ni − 〈n〉)(nj − 〈n〉)

with Q = (π, π), which is unity for complete ordering.
We performed grand canonical calculations by deter-

minantal quantum Monte Carlo. These are often very
difficult for doped systems because of a sign problem.
Fortunately, the average sign is favorably large in the
relevant parameter range of tx/ty = 0.5 and large V
(Fig. 1). In the opposite case of isotropic tx = ty at
small V , 〈sign〉 becomes very small. The charge or-
der parameter exhibits similar behavior, but it is less
strongly dependent on tx/ty . Charge order grows with
increasing V .

Fig. 2 shows the charge correlation length ξcc. At
small interactions, V = 1.5 and 2.0, the correlation
length seems to saturate, but for V = 2.5 and 3.0 it
increases exponentially with β, with a V -dependent
slope. This behavior is consistent with the 1D Ising
model in a transverse field (IMTF) [5], which is equiv-
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Fig. 1. Mean value of sign and order parameter ∆2

co
as functions

of tx/ty at V = 3, β = 6, L = 16, 〈n〉 = 0.5, and as functions

of V at β = 6 (inset).
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Fig. 2. Logarithm of the charge correlation length ξcc as a

function of β for different interactions V (L = 32 for V = 1.5

and 2; L = 44 for V = 2.5 and 3)

alent to Eq. 1 in the limit of one spinless electron per
rung. For large V , the transverse field goes to zero, and
ξIMTF = | ln tanh(β)|−1. This is exponential behavior
with slope 2 at large β, which the data in Fig. 2 appear
to approach. There is long range order in the thermo-
dynamic limit only at β = ∞. For weaker interactions,
V < 2ty , the correlation length ξIMTF remains finite
even in the limit β → ∞, showing a disordered phase at
all temperatures. The results in Fig. 2 are nicely con-
sistent with recent DMRG calculations [6] which show
that at T = 0 the system has a quantum phase transi-
tion to an ordered phase at Vc = 2.1(1).

However, the behavior of finite size systems is differ-
ent from the IMTF in the thermodynamic limit. As a
function of inverse temperature, the charge order pa-
rameter exhibits a crossover at large V (Fig. 3). For
the single ladder, this crossover is a finite size effect. It
appears since at some β, the charge order correlation
length will exceed the system size, resulting in appar-
ent long range order. For a three-dimensional system
of coupled ladders, this crossover can become a phase
transition. The order parameter at V = 3 and different
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Fig. 3. Charge order parameter as a function of β for V = 3.0

and V = 2.5 with L = 32 rungs.
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Fig. 4. Mean electron density as a function of the chemical

potential µ at β = 6, L=16.

β scales well as a function of ξ(L)/L.
The onset of charge order at large V is most clearly

visible in the single particle gap shown in Fig. 4. It
manifests itself as a plateau in the n(µ) dependence
where 〈n〉 = 0.5 remains constant in a region µmin <
µ < µmax. At large V , the upper boundary µmax shifts
with V as approximately 3V , which is the same value
as in the atomic limit at full ordering.
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