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We study the single-particle properties of quarter-filled ladder systems such as ��-NaV2O5 by means of a
recently developed generalization of the variational cluster perturbation theory to extended Hubbard models.
We find a homogeneous antiferromagnetic insulating phase for nearest-neighbor repulsions smaller than a
critical value, without any metallic phase for small repulsions. Different from cluster dynamical mean-field
theory and local density approximation considerations, the inclusion of diagonal hopping within a ladder has
little effect on the bonding bands, while flattening and shifting the antibonding bands. In the low-temperature
charge-ordered phase, the spectrum depends on whether the ordering is driven by the Coulomb repulsion or by
the coupling to a static lattice distortion. The small change of the experimentally observed gap upon charge
ordering implies that the lattice coupling plays an important role in this ordering. Interladder coupling is
straightforward to include within our method. We show that it has only a minor effect on the spectral function.
The numerically calculated spectra show good agreement with experimental angle-resolved photoemission
data.
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I. INTRODUCTION

In recent years low-dimensional strongly-correlated sys-
tems have been the subject of many experimental and theo-
retical studies due to their fascinating properties such as the
occurrence of ordered patterns of the ion charges. A com-
pound in this class of materials is the low-dimensional vana-
dium bronze ��-NaV2O5. Although known for many years1

it has attracted considerable attention in recent years because
of a very interesting low-temperature phase. The compound
exhibits a spin-Peierls-like transition at Tc�35 K accompa-
nied by the opening of a spin gap.2 At the same3 or slightly
higher temperature charge ordering takes place. Different
from the x-ray investigations, recent studies4–6 at room tem-
perature showed a disordered state with equivalent valence
4.5 for all vanadium ions. Below the phase transition point,
NMR studies7 gave two different valences for the ions, a
clear evidence for the formation of a charge-order pattern
below Tc. Since one dxy electron is shared by two V sites in
a V-O-V rung, the ordering occurs as a static charge dispro-
portion � between the V ions, yielding charges 4.5±� with a
zig-zag pattern of �’s. Since the crystal environment of the
vanadium ions is asymmetric, the dxy electrons are coupled
to the lattice via a strong Holstein-like electron-phonon
interaction.8 This results in a static lattice distortion below
the charge-ordering transition temperature, where the ion dis-
placements from their positions in the high-temperature
phase is of the order of 0.05 Å as observed in x-ray diffrac-
tion experiments.9

Although the crystal structure of ��-NaV2O5 is composed
of nearly decoupled two-dimensional layers that consist of
coupled two-leg ladders, spin-susceptibility measurements2

revealed that the system can be reasonably well described by
a one-dimensional �1D� Heisenberg model. This behavior
could be explained by realizing that the molecular-orbital
state on a rung occupied by one electron is a key element of
the electronic structure,10 yielding quasi-1D magnetic ex-

change couplings. In addition angle-resolved photoemission
spectroscopy �ARPES�, performed in the disordered high-
temperature phase showed quasi-1D band dispersions of the
vanadium 3d bands,11,12 and it was argued that spin-charge
separation should be present in this system.13

Previous studies14–17 revealed that the electron-phonon
coupling is very important for the phase transition in quarter-
filled ladder compounds. For this reason we study a model
Hamiltonian that includes the coupling of the dxy electrons to
the lattice. The relevant parameters for the study of lattice
effects can be obtained from experiments18 �phonon frequen-
cies�, and from first-principle calculations �lattice force con-
stants and electron-phonon coupling�.5,19

Static and dynamic properties of quarter-filled ladder
compounds without coupling to the lattice have been
studied intensively in the past using different methods such
as mean-field approaches,20–22 exact diagonalization �ED�
of small clusters,23–26 density-matrix renormalization-group
�DMRG�,27 cluster dynamical mean-field theory
�C-DMFT�,28 and bosonization and renormalization-group
techniques.29 Recently the influence of the lattice coupling
on the charge-ordering transition was investigated by em-
ploying ED methods.17

In this paper we study the single-particle spectral function
of the compound ��-NaV2O5, which can be directly related
to the ARPES experiments by applying the recently proposed
variational cluster perturbation theory �V-CPT�.30 This
method is a combination of the cluster perturbation theory31

and the self-energy functional approach �SFA�,32 which pro-
vides results for the infinite lattice and allows us to study
symmetry-broken phases. It was used with success for the
investigation of the magnetic ground-state properties of the
two-dimensional Hubbard model.33 For Hamiltonians includ-
ing offsite Coulomb interactions an extension of this theory
has been developed,34 which turns out to give very accurate
results for the one- and two-dimensional extended Hubbard
model.
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The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and give a short description of the
V-CPT method. Sections III and IV include our results for
single and coupled ladders, respectively, and we finally draw
our conclusions in Sec. V.

II. MODEL AND METHOD

On a microscopic level, ��-NaV2O5 can be described by
an extended Hubbard model �EHM�. In order to take into
account lattice effects we further extend this well-known
model by a Holstein-like electron-phonon coupling, which a
recent LDA study19 showed to be especially important, yield-
ing the model

H = HEHM + Hl + He−l, �1�

with HEHM the EHM Hamiltonian, Hl the contribution of the
lattice, and He−l the Holstein coupling. These terms are given
by

HEHM = − �
�ij�,�

tij�ci�
† cj� + H.c.� + U�

i

ni↑ni↓ + �
�ij�

Vijninj ,

�2a�

Hl = ��
i

zi
2

2
, �2b�

He−l = − C�
i

zini, �2c�

where �ij� connects nearest-neighbor bonds, and tij is the
corresponding hopping matrix element. In Fig. 1 the lattice

structure and the hopping processes used in this study are
shown. The most commonly used set for these matrix ele-
ments is ta=0.38 eV, tb=0.18 eV, and txy =0.012 eV, and
was obtained by fitting the local density approximation
�LDA� bands.5 A recent study19 gave similar parameter val-
ues. By including the additional hopping term td in a massive
downfolding procedure, Mazurenko et al.28 found similar
values for ta and txy, but the values tb=0.084 and td=0.083
differ considerably from previous studies. In the present
study we set ta as the energy unit and fix tb=0.5, except for
Sec. III C, where we study the spectral function including the
hopping term td. The onsite Coulomb interaction is set to
U=8 throughout the paper, in accordance with band-
structure calculations,19 and the intersite Coulomb interac-
tion Vij is treated as a free parameter of the system, since the
determination of a proper value within first-principle calcu-
lations is very difficult.

The lattice distortions are given in units of 0.05 Å, since
the ion displacements in the ordered phase are of this order
of magnitude. The electron-phonon coupling C and the lat-
tice rigidity � were determined by first-principle
calculations19 yielding C=0.35 and �=0.125 in these units.
We restrict our investigations to static distortions and neglect
dynamical phonon effects, similar to parts of Ref. 17. More-
over, as discussed below, we use a staggered zig-zag con-
figuration for the zi, as observed experimentally.9

The method we use in this paper for the calculation of the
single-particle spectrum is the variational cluster perturba-
tion theory for an EHM.34 The main idea is to decouple the
lattice into clusters of finite size as depicted in Fig. 1, yield-
ing the Hamiltonian

H = �
R

�H0
�c��R� + H1�R�� + �

R,R�

H0
�i��R,R�� , �3�

where R denotes the individual clusters. The first sum con-
sists of decoupled intracluster Hamiltonians with interaction
part H1�R�, and the second sum gives the coupling between
clusters, which must be of single-particle type and is of the
general form

H0
�i��R,R�� = �

a,b
Ta,b

R,R�cR,a
† cR�,b. �4�

The indices a and b are orbital indices within a cluster.
In the case of the EHM this decoupling into clusters yield-

ing Eq. �3� cannot be done in a straightforward way, since
the Coulomb interaction on the decoupled bonds is of a two-
particle type. In order to get a Hamiltonian of the form Eq.
�3� it is necessary to do a mean-field decoupling of the
Coulomb-interaction terms on intercluster bonds, which is
described in detail in Ref. 34. The coupling of the clusters is
then again of single-particle type, Eq. �4�, but in addition this
mean-field approximation introduces onsite potentials �i on
the cluster boundary, which correspond to the average elec-
tronic densities on site i of the cluster boundary. Let us stress
at this point that the �i are not variational parameters in the
sense of V-CPT but external parameters to the Hamiltonian
Eq. �3� in its mean-field decoupled form, entering term H0

�c�.

FIG. 1. Clusters used for the V-CPT calculations. The diagonal
hopping td is indicated only once, but is present equivalently be-
tween other sites. Decoupled bonds treated perturbatively are
marked by dashed lines, and the boxes show the clusters of finite
size. Left: Single ladder with 6�2 cluster. Right: Super cluster
consisting of two 12 site clusters.
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After the mean-field decoupling of inter-cluster bonds, we
can apply the V-CPT to the Hamiltonian Eq. �3�. Obviously
the Hamiltonian is invariant under the transformation

H0
�c��R� → H0

�c��R� + O�R�
�5�

H0
�i��R,R�� → H0

�i��R,R�� − �R,R�O�R� ,

with an arbitrary single-particle operator

O�R� = �
a,b

�a,bcR,a
† cR,b. �6�

This transformation allows the study of symmetry-broken
phases by the inclusion of fictitious variational symmetry-
breaking fields, which do not change the overall Hamil-
tonian, Eq. �3�, but instead just rearrange it. They are, there-
fore, different in character from the external lattice
distortions, Eq. �2b�, and also from the external mean-field
parameters �i, that directly enter the Hamiltonian. For our
model, symmetry-breaking fields corresponding to charge or-
der and to magnetic order can be important. We will later see
that we can omit a charge-order symmetry-breaking field. A
symmetry-breaking field for magnetic order will be consid-
ered in Sec. III B.

After introducing the external mean-field parameters �i
and the variational parameters �=�a,b, they have to be de-
termined in a proper way, which is done within the frame-
work of the SFA. It provides a unique way to calculate the
grand potential of a system by using dynamical information
of an exactly solvable reference system, which is in our case
the decoupled cluster. This grand potential is parametrized as
a function of the external mean-field parameters �i and the
variational parameters �=�a,b. The functional form of the
grand potential according to Refs. 32 and 34 is

	��,�i� = 	���,�i�

+ T �

n,q

tr ln
− 1

Gq
�0���i,i
n�−1 − ���,�i,i
n�

− LT�

n

tr ln„− G���,�i,i
n�… , �7�

where 	��� ,�i� is the grand potential of the decoupled clus-
ters, Gq

�0���i , i
n� is the noninteracting Green’s function of
the original infinite-lattice problem after mean-field decou-
pling of inter-cluster Coulomb interactions, ��� ,�i , i
n� is
the cluster self-energy, G��� ,�i , i
n� the cluster Green’s
function, and L denotes the number of clusters. All cluster
properties can easily be calculated by the Lanczos algorithm.
The sum over Matsubara frequencies in Eq. �7� is evaluated
by a continuation to the real frequency axis, i
n→
+ i0+,
yielding an integral from minus infinity to the chemical po-
tential �, determined below. Note that the Hamiltonian Eq.
�1� does not involve � in any way.

The general procedure to determine the �i and the values
of the variational parameters �a,b is the following. First one
has to distinguish between the external parameters �i and the
variational parameters �a,b. For the latter ones the general
variational principle of the SFA says that 	, Eq. �7�, must
have a stationary point with respect to �a,b, but the SFA does

not provide any information on the second derivative. That
means that this stationary point can be a maximum, mini-
mum, or a saddle point. The situation is different for the
external parameters. Since the �i are mean-field parameters,
one has to look for a minimum of 	 with respect to the �i.
Finding the minimum in the grand potential is equivalent to
a self-consistent solution for the �i, as shown in the Appen-
dix of Ref. 34.

In practice we used the following procedure. For a given
value of the �i one has to find the stationary point of
	�� ,�i� with respect to �, yielding a function 	=	��i�.
The proper value of the external parameters �i is then given
by the minimum of this function.

In Sec. III D we study the effect of the lattice distortions
zi, and the optimal distortions are determined by the mini-
mum ground-state energy. From a technical point of view
these distortions are treated on the same level as the mean-
field parameters �i, since they are external parameters to the
Hamiltonian Eq. �1� as well. In this case one has a function
	�� ,�i ,zi�. Again, for each pair �i ,zi one looks for the sta-
tionary point with respect to �, and the proper choice of �i
and zi is then given by the minimum of the function 	��i ,zi�.

The single-particle Green’s function is then calculated by

Gq�
� = �G��
�−1 − Tq�−1 �8�

with the Fourier-transformed matrix elements Tq,a,b.31 After
applying a residual Fourier transformation31 one finally ob-
tains the fully momentum-dependent Green’s function
G�k ,
� for the infinite size system. Note that the external
parameters ��i ,zi� are only present in the calculation of
G��
�, whereas the variational parameters � also enter Tq,
see Eqs. �4�–�6�.

Since calculations are not done at half filling, the chemi-
cal potential � is not known a priori. However, the knowl-
edge of � is important for the evaluation of the grand poten-
tial, as discussed above. One can calculate � from the
condition

n =
2

L
�

k
	

−�

�

d
 A�k,
� , �9�

where the spectral function A�k ,
� is given by

A�k,
� = −
1



Im G�k,
 + i�� �10�

and � is a small Lorentzian broadening. This amounts to a
self-consistent procedure, since for the calculation of � the
Green’s function G�k ,
� is needed, and for the determina-
tion of G�k ,
� one has to know �. This cycle can be avoided
as follows. One can infer the chemical potential directly
from the energies of the excited states obtained by the ED.
An approximate value for the chemical potential is given by

�ED =
Emin

IPES + Emax
PES

2
, �11�

with Emin
IPES the minimal energy of inverse-photoemission

�IPES� states and Emax
PES the maximum energy of photoemis-

sion �PES� states. This value only weakly depends on the
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mean-field and variational parameters. As discussed below,
in all our calculations we found a well established gap be-
tween the PES and IPES states yielding a constant density n
in a reasonably large neighborhood of the physical chemical
potential �, in agreement with quantum Monte Carlo
calculations.35 Therefore �ED gives a reasonable approxima-
tion for our calculations.

For the details of this method and the calculation of the
grand potential we refer the reader to Refs. 30–34, and ref-
erences therein.

III. RESULTS FOR SINGLE LADDERS

A. Critical coupling

We start our investigations with decoupled ladders, i.e.,
txy =0 and Vxy =0 �Fig. 1�. Before we turn to the spectral
function, we study the charge-ordering transition as a func-
tion of V=Va=Vb. Let us first look on the effect of the mean-
field decoupling of the nonlocal Coulomb interactions across
cluster boundaries as described in Sec. II. For this purpose
we consider the EHM without coupling to the lattice in the
limit of exactly one electron per rung and tb=0, i.e., without
hopping between rungs. In the mean-field approximation this
case results in a second-order phase transition between a dis-
ordered state and a zig-zag ordered state at a critical interac-
tion of Vc

MF=1.0. On the other hand, this case is exactly
solvable by a mapping to an Ising model in a transverse
field,22 yielding a critical interaction of Vc

exact=2.0.36 Thus we
expect strong mean-field effects, since in this special limit
we found Vc

exact=2Vc
MF. Since it can be assumed that a finite

value of the hopping between adjacent rungs tb weakens the
charge ordering, the actual critical value Vc is presumably
located slightly above 2.0 when tb is included.

For single ladders at quarter filling one has only two dif-
ferent values for the mean-field parameters �i, namely, �A on
sublattice A and �B on sublattice B, which correspond to the
left and right side of the rung on the cluster boundary, re-
spectively, see Fig. 1. In order to reduce the number of mean-
field parameters, we set �A= �n�+� and �B= �n�−�, with the
average density fixed to �n�=0.5. This yields only one mean-
field parameter � instead of two parameters, �A and �B.

For second-order phase transitions it can in addition be
important to rearrange the Hamiltonian by means of a ficti-
tious staggered chemical potential as a variational
parameter.34 This field is included by adding and substracting
�Eq. �5�� the single-particle operator O�R�, Eq. �6�, with

�a,b = ��a,beiQra, �12�

where � denotes the variational parameter, ra is the lattice
vector of site a ,�a,b is the Kronecker � for sites a, b, and
Q= �
 ,
�. Initial calculations showed that in the present
case the inclusion of such a field does not have any signifi-
cant effect and the relative change in 	 is at most of the
order of 10−4. Although the staggered field Eq. �12� is the
Weiss field associated with the charge density wave, its effect
is very small, since the symmetry is already broken by the
mean-field decoupling at the boundaries. We also considered
a staggered chemical potential similar to Eq. �12�, but which

is nonzero only on the cluster boundaries. In the spirit of
V-CPT this corresponds to include the mean-field parameter
� also in the set of variational parameters �. Not surpris-
ingly, the effect of this field was even smaller than for the
field Eq. �12�. For this reason all further calculations have
been done without a staggered chemical potential.

We now discuss our results, setting tb=0.5. We first dis-
cuss the case without coupling to the lattice. Finite lattice
coupling will be considered in Sec. III D. In order to deter-
mine the order of the transition within the framework of
V-CPT it is sufficient to calculate the grand potential 	, Eq.
�7�, as a function of the mean-field parameters.34 Figure 2
shows the dependence of 	��� on the mean-field parameter �
calculated with a 6�2 cluster as a reference system. One can
see that the system undergoes a continuous phase
transition,34 which is located between V=1.5 and V=1.7,
since the minimum of 	��� shifts from �=0 to a finite value.
This value for the critical interaction is considerably smaller
than the above mentioned value of the analytical solution,
but the agreement is much better than the result of the purely
mean-field calculation, Vc

MF=1.0.
In order to study the finite-size dependence of the critical

Coulomb interaction we performed calculations on clusters
of different length, and the results are depicted in Fig. 3. The
steps in V in our calculations were �V=0.01, which results
in error bars of �Vc=0.005. As expected, Vc is strongly
finite-size dependent. From Fig. 3 we can expect that for
larger cluster sizes the critical interaction Vc increases further
and reaches the expected value of slightly above 2.0, but for
a more sophisticated finite-size scaling our cluster sizes are
too small. Nevertheless it is possible to study the spectral
function both in the disordered and the ordered phase. Since
the calculations for the 8�2 ladder are very time consum-
ing, all single-ladder spectra presented in this paper have
been determined with a 6�2 ladder as reference system.

B. Disordered phase

We start our investigations of the spectral function with
the disordered high-temperature phase. Since ��-NaV2O5

FIG. 2. Grand potential 	��� as a function of the mean-field
parameter � with a 6�2 cluster serving as reference system, and
without coupling to the lattice. Upper panel: V=1.5. Lower panel:
V=1.7.
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may be near a quantum critical point between a ordered and
disordered phase, we choose the nearest-neighbor interaction
to be slightly below the critical value. We set V=Va=Vb
=1.3, tb=0.5, and we do not include diagonal hopping, i.e.,
td=0. The result of this calculation is shown in Fig. 4. An
additional Lorentzian broadening of �=0.1 has been used for
all spectra shown in this paper. The dashed vertical line
marks �ED calculated from Eq. �11�, and the dotted line de-
notes �CPT determined from the condition Eq. �9�. For the
latter quantity the sum over momentum vectors had to con-
sist of about 80 vectors in order to get a well converged
result. It is easy to see that �ED=1.71 lies exactly in the
middle of the gap, whereas �CPT=1.23 is located at its lower
boundary. But since there are no in-gap states both values of
� give approximately the same average density n, and the
ground-state energy E0=	+�N hardly depends on whether
we use �ED or �CPT. These facts confirm that our approxi-

mation to use �=�ED as chemical potential gives correct
results, and in addition the numerical effort for this proce-
dure is much less than for the above described self-consistent
determination of �.

As one can easily see in Fig. 4, the spectral function ex-
hibits a well-defined gap around the chemical potential, a
clear indication of insulating behavior. In order to check if
the insulator is only stable above some critical intersite Cou-
lomb interaction, we calculated the gap � at �ka ,kb�
= �0,
 /2� as a function of the intrarung interaction Va. We
studied two cases with Vb=0 and Vb=Va, respectively, and
the results are shown in Fig. 5. Note that for Vb=0 no mean-
field decoupling is needed, since there are no interaction
bonds between different clusters. At Va=0, where both cases
are equivalent, we found a finite value of the gap, ��0.55.
We checked the finite-size dependence by calculating the gap
on a 4�2 cluster giving ��0.59. By applying a linear
1 /Nrungs extrapolation to Nrungs=� one gets ��0.47, indicat-
ing that the curves in Fig. 5 somewhat overestimate the value
of the gap for the infinite ladder. Nevertheless we conclude
from our calculations that the system is insulating already for
small values of Va. This is consistent with DMRG
calculations,27 where for ta� tb a homogeneous insulating
phase has been found for V=0. The behavior of the spectral
function is also in agreement with ED calculations on small
clusters for V=0, where for large enough ta an insulating
state has been found.26 Similar results have been obtained by
Kohno37 for the U=� Hubbard ladder.

In the case Vb=0, which means that there is no Coulomb
interaction between adjacent rungs, we found that � in-
creases linearly with Va. For Vb=Va the gap is slightly larger
and the deviation increases with increasing Va. Here, with a
6�2 cluster as reference system, the system starts to order at
Vc�1.625, which results in the kink in � around this critical
value. Note that for Vb=0 such a phase transition is not pos-
sible.

Let us now discuss the spectral features for ka=0 as
shown in Fig. 4. The spectral function looks very similar to
that of the half-filled one-dimensional Hubbard model with a
totally filled lower and an empty upper band. Different from
the 1D Hubbard model the gap between these two bands is
not only determined by the onsite interaction U, but mainly
by the intrarung interaction Va, as discussed above. At k
= �0,0� one can see signatures of spin-charge separation,

FIG. 3. Finite-size dependence of the critical Coulomb interac-
tion Vc without lattice coupling. Error bars are due to the finite step
�V=0.01 in the calculations. Dotted line: Linear extrapolation of
the 8 and 6 rung cluster. Dashed line: Quadratic extrapolation of the
8, 6, and 4 rung cluster.

FIG. 4. Single-particle spectral function A�k ,
� calculated with
a 6�2 cluster in the disordered phase at Va=Vb=1.3. Top panel:
Momentum ka=0 perpendicular to the ladder. Bottom panel: ka

=
. The dashed line marks the chemical potential calculated by Eq.
�11�, the dotted line marks the result obtained from Eq. �9�.

FIG. 5. Gap � in the spectral function as a function of Va.
Squares: Vb=0. Diamonds: Vb=Va.
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where the band is split into a low energy spinon band �at
approximately 
−��−1.5� and a holon band at slightly
higher energy �
−��−2.0�. This splitting has not been seen
directly in experiments,11,12 since it is small and temperature
effects did not allow a high enough experimental resolution.
However, by studying the temperature dependence of
ARPES spectra, it was argued that subtle spectral-weight re-
distributions can be related to spin-charge separation.13 Some
spectral weight can also be found at very high energies of
about �
−���8.5, which is close to the onsite energy U
=8 and can thus be related to doubly-occupied sites.

Infrared �IR� experiments probe transitions near the �
point, that is between even �0, 0� and odd �0,
� states in the
language of single ladders. From Fig. 4 one can extract an
excitation energy of roughly 3ta, which is in good agreement
with the experimentally found 1 eV absorption peak.38

The lower and upper bands disperse with period 
 indi-
cating a doubling of the unit cell in real space, similar to the
1D Hubbard model. In order to determine the origin of this
doubling we have calculated the real-space spin correlation
function Sr= �S1

zS1+r
z � within the cluster by exact diagonaliza-

tion, where S1
z and Sr

z are the z components of a spin on the
cluster boundary and on a rung with distance r to the bound-
ary. In the upper panel of Fig. 6 this correlation function is
shown for two different paths, where the solid line is Sr
along one leg of the ladder, and the dashed line is Sr on a
zig-zag path through the ladder. Both correlation functions
show clear antiferromagnetic correlations along the ladder
similar to results obtained by the finite-temperature Lanczos
method.25 By applying a fictitious symmetry-breaking mag-
netic field via the operator O�R�, Eq. �6�, we can estimate
whether this ordering is of long-range type or not. Similar to
Ref. 33 we choose for this field

�a,b = h�a,bz�eiQ̃ra, �13�

where z� is ±1 for spin ↑,↓ in the orbitals a ,b ,�a,b is the

Kronecker �, and h is the field strength. The wave vector Q̃

is set to �0,
� yielding a staggered field along the ladder.
The dependence of 	 on this fictitious field is depicted in the
lower panel of Fig. 6. Similar to the one-dimensional Hub-
bard model at half filling,33 there is only one stationary point
at h=0, which means that the system does not show long-
range antiferromagnetic order, but is rather in a paramagnetic
state with short-range antiferromagnetic correlations.

The above considerations show that the system exhibits
short-range antiferromagnetic spin correlations along the lad-
der, which can produce the doubled unit cell. Nevertheless it
is also possible that the doubling of the unit cell is due to
short-range charge correlations and not due to spin correla-
tions. In order to clarify this point we calculated the spectral
function at Vb=0 and finite Va, where no charge ordering is
possible. Also in this case the periodicity of the bands with
largest spectral weight is 
 at ka=0 and 2
 at ka=
. This
shows that below the phase transition at Va=1.3, the dou-
bling of the unit cell is mainly due to short-range spin cor-
relations, and charge correlations play only a minor role in
this context.

When turning to ka=
, the spectral function looks totally
different. As on can easily see in Fig. 4 there is hardly any
spectral weight below the chemical potential, which means
that there are no occupied states in the channel ka=
. This
can be understood, because ka=
 corresponds to an anti-
bonding state within a rung, which has energy 2ta relative to
the bonding orbital and is therefore not populated in the
ground state.

An obvious difference between the spectra for ka=0 and
ka=
 is that in the latter case the excitations with largest
spectral weight located between 
�3 and 
�4.5 disperse
with periodicity 2
 instead of 
. Qualitatively this can be
understood as follows. When inserting a particle with ka=0,
this electron will occupy a state in the bonding orbital. Since
one of the two states in this orbital is already occupied, the
additional particle must have opposite spin, and thus this
particle is connected to the antiferromagnetic background. A
particle with ka=
 occupies a state in the antibonding or-
bital, and since this orbital is not occupied, both spin direc-
tions possess equal possibility. Therefore an electron with
ka=
 is not influenced by the antiferromagnetism in the
ground state.

C. Disordered phase including diagonal hopping

So far we have studied single ladders only with hopping
parameters ta and tb and neglected additional diagonal hop-
ping processes td, as indicated in Fig. 1. These hopping pro-
cesses have been important in first-principle calculations in
order to fit the LDA bands correctly.39 Moreover td has been
important in C-DMFT calculations in order to describe the
insulating state in the disordered phase properly.28 In this
section we study the effect of td within the V-CPT frame-
work.

In Fig. 7 the spectral function is shown for Va=Vb=1.3,
tb=0.25, and td=0.25, where the hopping parameters are
chosen similar to Ref. 28. Whereas the spectrum at ka=0 is
almost indistinguishable from Fig. 4, we see a big difference
at ka=
. There is still hardly any spectral weight below the

FIG. 6. Magnetic properties of a single ladder at Va=Vb=1.3.
Upper panel: Spin correlation function Sr= �S1

zS1+r
z � calculated on an

isolated 6�2 cluster. Lower panel: Grand potential 	 as a function
of the strength of the fictitious field Eq. �13�.
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Fermi energy, but the band with largest spectral weight
above the Fermi level is now located at approximately

−��2.0 and can be regarded as dispersionless.

From a qualitative point of view this can be explained by
the dispersion of non interacting fermions on a two-leg lad-
der in the presence of diagonal hopping, which is given by

��k� = − ta cos ka − 2tb cos kb − 2td cos ka cos kb, �14�

where the values for ka are restricted to 0 and 
, and in these
two cases the dispersion can be written explicitly as

��ka = 0,kb� = − ta − 2�tb + td�cos kb �15a�

��ka = 
,kb� = + ta − 2�tb − td�cos kb. �15b�

This means that for ka=0 the bandwidth is determined by the
sum of tb and td, whereas for ka=
 it is set by the difference
of these two hopping processes. Since we used tb= td=0.25,
this fits perfectly to the spectrum shown in Fig. 7. The sum is
equal to the value of tb used for the calculations without
diagonal hopping in Sec. III B, and the difference is equal to
zero, which explains the dispersionless band at ka=
.

The picture that evolves from our calculations is some-
what different to that obtained in first-principle and C-DMFT
calculations. To begin with, the bands obtained from the
LDA all disperse with periodicity 2
 and not 
, as observed
experimentally, along the b direction. Moreover we could not
find any signature of a flattening of the upper dxy bands in the
direction k= �0,0�→ �0,
� when a diagonal hopping is in-
cluded, which was reported in Ref. 39. The main difference
of our calculations to C-DMFT results is that C-DMFT finds
a metal-insulator transition at some finite value of V, and this
transition point is shifted downward significantly when td is
included.28 In contrast we find an insulating state at reason-
able values of U already for V=0, even without the inclusion
of td. The discrepancy to C-DMFT calculations are very
likely due to the fact that the cluster used in the C-DMFT
calculations consisted only of a single rung, and fluctuations

along the ladders, which seem to be important in this system,
have been neglected altogether.

D. Ordered phase

We investigate two different driving forces for the occur-
rence of a charge-order pattern, �i� the coupling of the elec-
trons to lattice degrees of freedom, and �ii� nearest-neighbor
Coulomb interaction, similar to Ref. 17.

Let us start our investigations with possibility �i�, the cou-
pling to the lattice. In order to keep the calculations simple,
we consider static lattice distortions, as discussed in Sec. II.
The inclusion of dynamical phonon effects would pose a
severe problem to the diagonalization procedures, because
for phonons the Hilbert space is a priori of infinite size, and
some truncation scheme has to be applied.17 Well converged
results for the spectral function in the presence of dynamical
phonons have so far only be achieved for the polaron and the
bipolaron problem.40

We assumed a zig-zag charge order pattern, justified by
experimental evidence:9

zi = zeiQri. �16�

In order to keep the calculations simple and the number of
independent variables small, we did not consider an addi-
tional variational parameter such as a staggered chemical po-
tential. The proper value of the distortion z is determined as
discussed in Sec. II.

Motivated by previous work,17 we set Va=Vb=1.3, since
for this choice we expect the distortions to be close to the
experimental value of zexp�0.95 �in units of 0.05 Å�. Indeed
we found z=0.911, which is close to zexp, and the mean-field
parameter was �=0.338. The spectrum calculated with these
values is shown in the top plots of Fig. 8.

The spectral function shows similar features as in the un-
distorted phase. For ka=0 the bands disperse with periodicity

, whereas for ka=
 no evidence for a doubling of the unit
cell can be found, and the periodicity is 2
. Nevertheless,
the gap at k= �0,
 /2� is considerably larger than for V
=1.3 without distortions, see Fig. 4.

An interesting quantity when considering charge-ordering
phenomena is the charge-order parameter, which we calcu-
late as

mCDW =
1

Nc�n��j

��nj� − �n��eiQrj , �17�

where the expectation value �nj� is calculated from the
V-CPT Green’s function, and �n�=0.5. The factor �n� in the
denominator assures that the order parameter is normalized
to the interval �0,1�. For Va=Vb=1.3 and static distortions we
obtained mCDW=0.65, which means that the disproportion of
charges is rather large.

Let us now consider possibility �ii�, where the coupling to
the lattice is switched off, C=0,�=0, and the charge order-
ing is driven by the nearest-neighbor Coulomb interaction. In
order to make a connection to the results obtained with lat-
tice distortions, we calculate the spectral function at a similar
value of the charge order parameter. We found that for Va

FIG. 7. Spectral function A�k ,
� when the diagonal hopping is
included, tb=0.25, td=0.25. The Coulomb interaction was Va=Vb

=1.3. The dotted line marks the chemical potential.
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=Vb=2.05 the order parameter is mCDW=0.66, close to the
value found above.

The spectral function is shown in the lower plots of Fig.
8. The spectral features again look very similar to Fig. 4. By
comparing the upper and lower plots of Fig. 8, one can see
that in both cases the gap at k= �0,
 /2� is larger than in the
disordered phase, Fig. 4. To be specific we found a gap size
of approximately 2.6ta in the presence of lattice distortions
and 3.4ta without lattice distortions, whereas in the disor-
dered phase the gap was 1.8ta. It is interesting that the
momentum-resolved single-particle spectral features do de-
pend on the driving force of the transition, which was much
less pronounced for, e.g., spin and charge susceptibilities ob-
tained by integration over the electron states.17

The excitation energy near the � point, relevant for IR
experiments, can be read off from Fig. 8 to be roughly 4ta

with lattice distortions and 5ta without distortions. Although
these excitation energies are not constant compared to the
disordered phase, calculations including the lattice degrees
of freedom give a better agreement to experimental IR ab-
sorption data,38 which show neither a shift of the 1 eV peak
nor the appearance of new peaks related to electronic transi-
tions.

IV. RESULTS FOR COUPLED LADDERS

So far we studied only single ladders and neglected the
interladder couplings, since they are frustrated and one might
assume that they are only of minor importance. Nevertheless
our approach allows us to include these inter-ladder cou-
plings by choosing an appropriate cluster geometry, as indi-
cated on the right-hand side of Fig. 1. Note that it is neces-
sary to use a 2�12 supercluster which allows for a
commensurate charge-order pattern across the cluster bound-
aries. For details of the treatment of superclusters we refer
the reader to Ref. 34

The parameter values for the intercluster coupling are
chosen in the following way. First-principle calculations
have shown that the effective hopping between different lad-
ders is very small, so we set txy =0.1ta, and longer ranging
hopping processes are neglected since the linear dimensions
of the cluster are rather small. The values for the other pa-
rameters are the same as used for the calculations in Sec.
III B.

In Fig. 9 the spectral function for Va=Vb=Vxy =1.3 is
shown. For k parallel to the b axis one can easily see that the
spectrum looks very similar to the spectrum of a single lad-
der �upper panel of Fig. 4�. The main difference between
single and coupled ladders is that the chemical potential is
much larger in the latter case ���3.0�, which is due to the
frustrated interladder bonds.

When turning to k parallel to the a axis the spectral func-
tion looks very different. The most striking feature is that

FIG. 8. Spectral function A�k ,
� in the ordered phase. Top:
Transition driven by coupling to the lattice. Bottom: Transition
driven by Coulomb interaction. For the interaction V=Va=Vb was
used, with the values as given in the plots. The dotted line marks the
chemical potential.

FIG. 9. Spectral function A�k ,
� in the disordered phase at Va

=Vb=Vxy =1.3 calculated on the 2�12 super cluster. Top: Momen-
tum k along the ladder direction. Bottom: k perpendicular to the
ladder direction.
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there is hardly any dispersion of the bands, and the filled
low-energy band can actually be considered as dispersion-
less. The spectral weight of this excitation, however, de-
creases significantly away from k=0 and is transferred to
unoccupied states above the Fermi level at approximately

−��1.5.

Let us now compare our numerical results to experimental
data. Kobayashi et al.11 performed ARPES at room tempera-
ture, where the system is in the disordered phase. For mo-
mentum transfer parallel to the a direction they found no
dispersion of the V 3d bands, which fits perfectly well to our
results. For k along the b axis a band dispersion of a 1D
antiferromagnetic quantum system was found with experi-
mental band with of approximately 0.06–0.12 eV. This
value is rather small compared to the bandwidth in our cal-
culation of approximately 0.35 eV, see Fig. 9. We checked
that the bandwidth scales with the hopping along the ladder
tb �not shown�, and therefore this discrepancy between cal-
culations and experiment can be shortened by choosing a
smaller value for tb, which does not significantly affect the
charge ordering of the system. Nevertheless the strong dif-
ference between spectra along a and b directions are well
described by our calculations.

V. CONCLUSIONS

In this paper we have applied the recently proposed gen-
eralization of the V-CPT for extended Hubbard models to the
case of quarter-filled ladder compounds. We were thus able
to perform the first theoretical study of the spectral function
of ��-NaV2O5 within the extended Hubbard model.

For single ladders in the disordered phase we found that
in the channel ka=0 the system behaves like a one-
dimensional antiferromagnetic insulator, and the gap is
mainly determined by the nearest-neighbor Coulomb interac-

tion on a rung. Our calculations suggest that the system is in
an insulating phase for all values of V.

This picture still holds when a diagonal hopping td is in-
cluded in the Hamiltonian, which was suggested to be im-
portant as a result of LDA and C-DMFT studies. We could
show that for ka=0 hardly any changes can be seen in the
spectral function, whereas for ka=
 the bands become flat.
These findings do not agree with LDA considerations,39

where a flat upper band was observed for ka=0, thus requir-
ing a finite value of td in a tight-binding fit.

For the transition into the charge-ordered low-temperature
phase we considered two driving mechanisms, the coupling
to a static lattice distortion and the nearest-neighbor Cou-
lomb interaction. With lattice coupling we found, similar to
Ref. 17, that for V=1.3 the distortion is close to the experi-
mentally found size, accompanied by a large disproportion of
charges. In order to reach the charge-ordered phase solely by
Coulomb interactions, we had to use a large value of V �with
V=2.05 for the same value of the order parameter�, which
resulted in a large gap in the spectral function, considerably
larger than in the disordered phase and in the ordered phase
with lattice distortions. Since IR experiments38 do not show
such a discrepancy, we suggest that for the description of the
ordered phase, lattice distortions cannot be neglected.

Within our approach it was straightforward to study the
effects of interladder coupling on the spectral function. We
found that the spectra along the ladder direction are not sig-
nificantly affected by these couplings. Perpendicular to the
ladders the calculated bands are almost dispersionless, in
good agreement with experimental data.
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