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Charge order induced by electron-lattice interaction in NaV2O5
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We present Density Matrix Renormalization Group calculations of the ground-state properties
of quarter-filled ladders including static electron-lattice coupling. Isolated ladders and two coupled
ladders are considered, with model parameters obtained from band-structure calculations for α′-
NaV2O5. The relevant Holstein coupling to the lattice causes static out-of-plane lattice distortions,
which appear concurrently with a charge-ordered state and which exhibit the same zigzag pattern
observed in experiments. The inclusion of electron-lattice coupling drastically reduces the critical
nearest-neighbor Coulomb repulsion Vc needed to obtain the charge-ordered state. No spin gap is
present in the ordered phase. The charge ordering is driven by the Coulomb repulsion and the
electron-lattice interaction. With electron-lattice interaction, coupling two ladders has virtually no
effect on Vc or on the characteristics of the charge-ordered phase. At V = 0.46 eV, a value consistent
with previous estimates, the lattice distortion, charge gap, charge order parameter, and the effective
spin coupling are in good agreement with experimental data for NaV2O5.

PACS numbers: 71.10.Fd, 71.38.-k, 63.22.+m

I. INTRODUCTION

Since the observation of a phase transition at TCO ≈ 34
K via magnetic susceptibility measurements,1 the phys-
ical properties of the low-dimensional inorganic com-
pound NaV2O5

2 have been investigated intensively. The
lattice distortions,3 the opening of a spin gap4 at TCO

or slightly below,5,6 and the static charge disproportion
δ between the V ions are the most remarkable proper-
ties of this phase transition, which was at first identi-
fied as a spin-Peierls transition like that in CuGeO3.

7

Later studies2 found that zigzag charge ordering oc-
curs below the phase transition in NaV2O5, which is
made up of quarter-filled ladders. It now appears that
the opening of the spin gap may be induced primar-
ily by charge transfer8,9,10,11 in the low temperature
superlattice.12,13,14,15,16 The discussion on the main driv-
ing force of the transition is still going on. It was ar-
gued recently that the Coulomb repulsion on an isolated
ladder might be too small to cause charge ordering.11,17

The inter-ladder coupling, which appears to cause the
spin gap, would then also have to be responsible for
the charge ordering. However, the electron-lattice cou-
pling has been found to contribute to the charge-ordering
transition.18,19,20,21,22,23

In this work, we concentrate on the effects of electron-
lattice interactions on the ground state of NaV2O5.
Due to the asymmetric crystal environment of the V
ions in NaV2O5, the strongest lattice coupling is a
Holstein-like electron-phonon interaction involving the
dxy electrons.20,24 We investigate the extended Hubbard
model with Holstein coupling, introduced in Ref. 23,
using high precision Density Matrix Renormalization
Group (DMRG) calculations on isolated and on two
coupled ladders. We show that, indeed, including the
electron-lattice coupling causes charge ordering to appear
on isolated as well as on two coupled ladders at signifi-
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FIG. 1: Schematic depiction of the vanadium ladders
in NaV2O5. The three types of hopping matrix ele-
ments (ta, tb, tab) and nearest-neighbor Coulomb repulsion
(Va, Vb, Vab) are indicated. Two ladders are shown.

cantly smaller Coulomb repulsions, with values which are
consistent with most independent estimates.

In Sec. II we present the model and discuss the pa-
rameter values and observables. We discuss results for
an isolated ladder in Sec. III as a function of the nearest-
neighbor Coulomb repulsion. Section Sec. IV treats cou-
pled ladders, and is followed by our conclusions.

II. MODEL

NaV2O5 is the only known quarter-filled ladder
compound.25 Ladder-like structures are formed by the
vanadium ions and are only weakly coupled. A
useful microscopic description is provided by an ex-
tended Hubbard model (EHM) with Coulomb repul-
sion between nearest-neighbor sites. The properties
of the EHM without electron-lattice coupling were
studied using mean field approaches,9,26,27,28 perturba-
tion theory,29 the Dynamical Mean-Field Theory,30 ex-
act diagonalization,23,28,31,32,33 bosonization,34 Quantum
Monte Carlo,35 and Cluster Perturbation Theory.36 De-
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tailed studies of the EHM were also performed using the
DMRG,37,38 but not at specific values of the coupling
parameters appropriate for NaV2O5.

A complete microscopic description of NaV2O5 must
incorporate the lattice distortion observed by x-ray
diffraction in the low temperature phase.3 The distor-
tions of the vanadium ions considerably change the dis-
tance to the neighboring oxygen atoms directly above or
below the vanadium site.3 Recent calculations using Den-
sity Functional Theory in the Local Density Approxima-
tion (LDA) have shown that the main effect of these dis-
tortions is a change of the local potentials, i.e., a Holstein-
like coupling He−l.

24 Indeed, the corresponding phonons
are the strongest-coupling Ag modes24 in NaV2O5; in
the current study, we restrict the electron-lattice cou-
pling to these distortions. The contribution of the lattice
deformation to the Hamiltonian can be approximated by
a parabolic potential Hl. This yields the microscopic
Hamiltonian proposed and studied on small systems in
Ref. 23,

H = HEHM + Hl + He−l (1)

with

HEHM = −
∑

〈ij〉,σ

tij

(

c†iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓ +
∑

〈ij〉

Vijninj , (2a)

Hl =κ
∑

i

z2
i

2
, (2b)

He−l = − C
∑

i

zini , (2c)

where ni = ni↓ + ni↑ is the occupation number and zi

the distortion at site i (in units of 0.05 Å). The Hamil-
tonian contains the effective lattice force constant κ and
a large Holstein constant C. The placement of the hop-
ping terms tij and the Coulomb repulsion Vij in the lat-
tice structure are depicted in Fig. 1. The parameters are
taken from LDA calculations24; the hopping amplitudes
tij are compatible with earlier calculations.25,39 The lat-
tice parameters C and κ were extracted by comparing
the total energy and the inter-ionic forces in distorted
and undistorted lattices. They correspond to the V-O-
stretching perpendicular to the ladder plane observed in
the 970 cm−1 phonon mode. As in Ref. 23, we take

ta = 0.35 eV = 2 tb , tab = 0.17 ta and 0.33 ta ,

Va = Vb = Vab = V , U = 8.0 ta ,

κ = 0.125 ta , and C = 0.35 ta . (3)

We compare results for two different values, 0.17 ta and
0.33 ta, of the interladder hopping because existing es-
timates of these parameters differ.24,25,39 The Coulomb
repulsion is very difficult to compute; estimates in the lit-
erature vary strongly.9,17,28,29,30,40 In our study, we take
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FIG. 2: Square of the charge order parameter, m2

CO, on an
isolated ladder without coupling to the lattice, as a function of
the nearest neighbor Coulomb repulsion V for several ladder
lengths L. The inset shows the finite size scaling data collapse,
with exponents ν = 1, β = 1

8
, and critical Coulomb repulsion

VC = 2.31(2).

Va = Vb = Vab = V for simplicity, and investigate the
model as a function of V .

We have performed DMRG calculations on isolated
ladders of length of up to L = 80 and on two coupled
ladders of length of up to L = 24, applying open bound-
ary conditions along the chains (b-direction). In the case
of two coupled ladders, we have taken periodic boundary
conditions in the a direction.

We have measured the charge order parameter mCO,
defined by

m2
CO =

1

N2〈n〉2

∑

ij

eiQ(Ri−Rj)
(

〈ninj〉 − 〈n〉2
)

, (4)

where Q = (π, π) and N is the total number of sites in the
system. The occupation number of the two inequivalent
V ions is then (1 ± mCO)/2.

The charge gap ∆C(L) and the spin gap ∆S(L) are
determined using

∆C(L) =
1

2
[E0(L, N + 2) + E0(L, N − 2) − 2E0(L, N)]

∆S(L) = E0(L, N, Sz = 1) − E0(L, N, Sz = 0) , (5)

where E0(L, N) is the ground state energy of the system
with L rungs per ladder and N electrons.38 Results are
extrapolated to L = ∞ using linear and quadratic fits in
1/L and by applying finite-size scaling.

III. ISOLATED LADDER

In this section, we present DMRG calculations on iso-
lated quarter-filled ladders (Vab = 0, tab = 0). We con-
sider systems with (C = 0.35) and without (C = 0)
electron-lattice interactions and compare the results.

Isolated quarter-filled ladders without coupling to the
lattice were investigated by Vojta et. al.37,38 for a range
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FIG. 3: Optimal zigzag distortion zopt, extrapolated to L =
∞, as a function of V on an isolated ladder system with
electron-lattice coupling. The inset shows the linear 1/L ex-
trapolation for some values of V . The experimentally de-
termined distortion in NaV2O5 corresponds to V ∗ = 1.3 ta,
indicated by the dotted lines.

of parameters. The parameters studied did not, how-
ever, include the couplings relevant for NaV2O5, which is
characterized by large hopping along the rungs, ta ≃ 2 tb,
large Coulomb repulsion U ≃ 8 ta, and charge ordering.
Ref. 38 found qualitatively different behavior for ta <

∼ tb,
where the spin gap was found to be finite, and ta >

∼ tb,
where the spin gap was found to vanish.

In Fig. 2, we display the square of the charge order
parameter m2

CO as a function of the nearest-neighbor
Coulomb repulsion V for different system sizes. At a
critical value Vc above 2 ta, there is a quantum phase
transition to a phase with finite charge order. The essen-
tial features of this transition can be described by a model
with a single charge degree of freedom on each rung, i.e.,
a pseudospin. When the hopping between rungs is ne-
glected, one arrives at the Ising model in a transverse
field (IMTF),9,33 which can be solved exactly.41 Indeed,
a finite-size scaling analysis for m2

CO in which L2β/νm2
CO

is plotted as a function of L1/ν(Vc

V − 1) with the critical

exponents ν = 1, β = 1
8 of the IMTF, shown in the in-

set, collapses all data points onto a universal curve and
yields a critical Coulomb repulsion of VC = 2.31(2) ta.
We have also performed a similar scaling analysis with-
out fixing ν and β, and obtain a reasonable data collapse
with ν = 1.0(1), β = 0.125(20), and VC = 2.31(4). We
note that β = 1

8 (which is also the exponent of the 2d
Ising model) is fairly close to the value extracted from
experimental results for NaV2O5,

5,42, about 0.15–0.20.
However, the effective Coulomb coupling V in NaV2O5

is probably considerably below VC ≃ 2.31 ta.
9,17,28,29,30,40

Therefore, the Coulomb repulsion alone is insufficient to
cause the charge ordering in NaV2O5.

When the electron-lattice coupling is taken into ac-
count, the behavior of the charge order parameter
changes drastically, as we will now show. The ground
state energy E0({zi}) of the Hamiltonian H (Eq. (1)) is
a function of the independent classical lattice distortions
zi on each site. First, we have determined the optimal
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FIG. 4: Square of the charge order parameter, m2

CO, calcu-
lated at the optimal distortion zopt on an isolated ladder with
electron-lattice coupling as a function of V and for several
ladder lengths L. The solid line is the result of a linear 1/L
extrapolation, illustrated in the inset for selected values of V .
The dotted lines mark V ∗ = 1.3ta.

distortion pattern on ladders of up to 16 sites using clas-
sical Monte Carlo simulations carried out in the space of
all zi.

In these simulations, the ground state energies are
determined by exact diagonalization. We use parallel
tempering43 to find all relevant distortion patterns. We
find that at low V the optimum lattice distortion (lowest
total energy) is zi = 0, i.e., no distortion. Above a criti-
cal value Vc ≈ 0.95 ta, there are two degenerate optimal
configurations, with finite zigzag lattice distortions

zi = zeiQ·Ri, Q = (π, π) , (6)

where Ri labels the lattice sites. The zigzag pattern of
the lattice distortions agrees with the experimentally ob-
served pattern.3 In the following, we therefore assume a
zigzag pattern.We determine the ground state by min-
imizing E0(z) as a function of the lattice distortion z,
similarly to Ref. 23. The position of the minimum de-
fines the optimal distortion zopt.

The optimal distortion zopt and the extrapolation to
the thermodynamic limit are presented in Fig. 3. The
distortion becomes finite at a critical Coulomb repulsion
VC = 0.95(1). From Fig. 3 and from the experimentally
determined size of the zigzag-distortion,3 (zexp ≈ 0.85 ×

0.5Å), we obtain an estimate for the effective Coulomb
repulsion in NaV2O5 of V ∗=1.3 ta, well within the range
of most earlier estimates17,28,29,30,40.

The square of the charge order parameter m2
CO(L),

calculated at the optimal distortions zopt(L), is shown
in Fig. 4, along with a finite-size extrapolation. Order
sets in at the same V as the lattice distortion zopt. For
the 1/L-extrapolated values, m2

CO is proportional to the
square of the optimal distortion z2

opt at all V . In a finite-
size scaling analysis (not shown), the scaling of mCO is
consistent with the mean-field exponent β = 1

2 , but not

with the IMTF exponent β = 1
8 .

A comparison of Fig. 2 and Fig. 4 illustrates the sub-
stantial decrease of the critical Coulomb repulsion due
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FIG. 5: Charge gap ∆C on an isolated ladder as a function
of V , with (solid) and without (dashed) electron-lattice cou-
pling. The results at V ∗ = 1.3 ta are indicated by dotted lines.
Inset: linear finite-size extrapolation in 1/L for systems with
(dist.) and without (no dist.) lattice distortion.

to the electron-lattice coupling. The critical value Vc de-
creases from Vc = 2.31(2) ta without electron-lattice cou-
pling to Vc = 0.95(1) ta with electron-lattice coupling.
The critical exponent of mCO is clearly smaller than
unity in both cases, but changes from β ≃ 1

8 to β ≈ 1
2

when the electron-lattice coupling is switched on. At the
coupling V ∗ at which the lattice distortion matches the
experiment value, we find m2

CO ≈ 0.37, very close to the
experimental results of about 0.3510 and 0.37.14

The charge gap ∆C is also influenced by the presence of
electron-lattice coupling, as shown in Fig. 5. The charge
gap increases with increasing V and lattice distortion and
does not vanish38 at V = 0. At V ∗ = 1.3 ta, the charge
gap agrees reasonably well with the experimental value
for the optical gap in NaV2O5.

44

The spin gap of an isolated quarter-filled ladder with-
out electron-lattice coupling has been shown by Vojta et

al.38 to vanish at moderate V when the rung hopping ta
is larger than tb, as is the case in NaV2O5. In Fig. 6(a),
we show some representative results of our calculations
of the spin gap, with and without electron-lattice cou-
pling, together with a quadratic 1/L-extrapolation. We
find that the spin gap extrapolates to zero on an isolated
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FIG. 6: Spin gap ∆S for (a) an isolated ladder and (b) two
coupled ladders. Lines represent a quadratic fit in 1/L. The
boxed descriptions of the curves are in the same vertical order
as the data.

0 0.01 0.02 0.03 0.04 0.05
1/L

0

0.04

0.08

0.12

J ef
f/e

V

V=1.0 (no dist.)
V=1.5 (no dist.)
V=2.1 (no dist.)
V=1.5 (dist.)
V=2.0 (dist.)

FIG. 7: Effective magnetic exchange coupling Jeff (Eq. (7))
as a function of inverse lattice size 1/L, for different values of
V , with and without lattice distortion.

ladder at all V in both cases. Charge ordering on an iso-
lated ladder is therefore not sufficient to induce a spin
gap.

The magnetic behavior of the quarter-filled Hubbard
ladder can be approximated by an antiferromagnetic
Heisenberg model.25,38,39 We determine an effective mag-
netic exchange interaction Jeff by equating the finite-size
spin gap in our model to that of a Heisenberg chain with
exchange constant J , i.e.,

∆Heisenberg
S (L)

J
=

∆Hubbard
S (L)

Jeff(L)
. (7)

The results are plotted in Fig. 7 as a function of inverse
system size 1/L. There is only a weak L-dependence,
and the scaling is linear in 1/L. Previous work using
exact diagonalization23 showed that the behavior of the
dynamical spin correlations S(k, ω) for the EHM with
electron-lattice coupling also closely resemble those of the
Heisenberg chain. Remarkably, our results for Jeff agree
very well with the estimates from the spin dispersion in
Ref. 23.

The resulting values of Jeff are plotted in Fig. 8 as
a function of V . As V is increased, the charge order
parameter increases, and Jeff decreases. This behav-
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FIG. 8: Effective magnetic exchange coupling Jeff on an iso-
lated ladder as a function of V , with (solid line) and without
(dashed line) electron-lattice coupling. The dashed-dotted
line is the result of perturbation theory38 for the undistorted
lattice, valid only at large charge order.
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FIG. 9: Square of the charge order parameter, m2

CO, for two
coupled ladders (4×L, tab = 0.33 ta) with periodic boundary
conditions in the a direction and with and without lattice
distortions. The results for infinite length are obtained using a
linear extrapolation in 1/L. Also included for comparison are
similarly extrapolated results for an isolated ladder (2 ×∞).

ior is in accordance with the experimental observation
that Jeff becomes smaller at lower temperature, where
charge order increases. Part of the reduction in Jeff is
due directly to the charge occupation of neighboring sites
along the chains, which implies a reduction by a factor
of (1−m2

CO).8 Our results, however, are far from such a
simple quadratic dependence on m2

CO.

IV. COUPLED LADDERS

The occurrence of a spin gap in NaV2O5 may largely be
due to the coupling of ladders.8,9,10,11 We have therefore
studied a system of two coupled ladders with periodic
boundary condition in the a direction. We have deter-
mined the pattern of optimal lattice distortions in the
same way as for the isolated ladder (for tab = 0.33 ta),
using exact diagonalization on a 16-site system, and find
a simultaneous zigzag distortion on both ladders to be
optimal. Due to the lattice structure (see Fig. 1), the
energy is invariant under a shift of the distortion by one
rung on either ladder. Using the DMRG, we have then
examined larger systems. We have determined the opti-
mal distortion zopt from the minimum of the ground state
energy E0(z) as a function of the uniform zigzag distor-
tion. The result is very similar to the lattice distortion in
the isolated ladder at the same V . The effective Coulomb
repulsion determined from the experimental lattice dis-
tortion is therefore still V ∗ = 1.3 ta.

Without electron-lattice coupling, convergence of the
DMRG calculations is difficult to achieve, restricting the
largest length to at most L = 12 at large V . The three
right-most curves in Fig. 9 show the results for the charge
order parameter as a function of V for lattice sizes L = 8,
L = 12, and for a 1/L extrapolation. For comparison,
the results for a single ladder without electron-lattice
coupling extrapolated in the same way are also shown
(middle solid line marked with stars). Clearly, the sys-
tem consisting of two coupled ladders tends to order at

even larger values of V than the isolated ladder, leading
to an even larger discrepancy with the estimates for V in
NaV2O5.

At the lattice sizes we were able to reach, the effects
of the open boundaries, especially effects caused by the
different number of neighbors at the boundary, are con-
siderable. While varying the boundaries, e.g., compen-
sating for missing neighbors, did affect the results shown
in Fig. 9, it did not change the overall tendency to shift
the phase transition to larger V .

For systems with electron-lattice coupling, we were
able to reach larger sizes, up to 4 × 16 sites at large V
and up to 4 × 24 at V ∗ = 1.3 ta. The results, as can be
seen in Fig. 9, are almost identical to the results on a
single ladder of the same length L, and are almost inde-
pendent of length in the ordered phase. Charge ordering
still takes place at V ≃ 0.95 ta.

The spin gap of the coupled ladder system is displayed
in Fig. 6(b) for V ∗ = 1.3 ta. Since estimates of the inter-
ladder hopping tab in NaV2O5 vary,24,25,39 we have per-
formed our calculations for two values, tab = 0.17 ta and
0.33 ta. At tab = 0.17 ta, the spin gap for two coupled lad-
ders both with and without lattice distortion is similar in
value and finite-size behavior to that for the isolated lad-
der, which vanishes in the thermodynamic limit. When
the inter-ladder hopping is increased to tab = 0.33 ta, the
spin gap becomes smaller and its finite-size dependence
appears to change in both cases. The physics of the indi-
vidual ladders thus appears to be noticeably affected by
inter-ladder coupling at this larger hopping.

Extrapolations of the gaps using a fit to a quadratic
polynomial in 1/L are indicated by the lines in the fig-
ure. The value of the spin gap in the L → ∞ limit
for all parameter values is approximately zero, |∆S(L =
∞)| < 0.01 ta. Some of the extrapolations in Fig. 6
yield values that are slightly negative. The magnitude
of these negative values gives as a minimal error esti-
mate for the extrapolation. Since the magnitudes of the
positive extrapolations are of similar size, we conclude
that the extrapolated spin gaps are zero to within er-
rors. In addition, the small extrapolated gaps are signif-
icantly smaller than the spin gap found experimentally
in NaV2O5, ∆S ≈ 10 meV ≈ 0.03 ta. The spin gaps at
other values of V (V = 0.9 ta, 1.5 ta) behave similarly.

We conclude that when two ladders are coupled, there
is no significant indication that a spin gap opens. This re-
sult is not unexpected, however, because the mechanism
which has been proposed as the cause for the spin gap
in the charge-ordered system,8,9,10,11 namely an in-ladder
dimerization of effective spin couplings, requires a charge-
ordering pattern with a period of four ladders in the a
direction; such a pattern is observed in NaV2O5.

12,13,14,15

V. CONCLUSIONS

In this paper, we have investigated the influence of
Coulomb repulsion and electron-lattice interactions in
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EHM+lattice Experimental

V = 1.3 ta data

Distortion/0.05Å 0.84 0.85, Ref. 3

m2

CO 0.37 0.35 − 0.37, Refs. 10,14

Jeff 63meV 60 meV, Ref. 10

∆C 0.7 eV 0.9 eV, Ref. 44

TABLE I: Comparison of experimental data for NaV2O5 to
the results for the Extended Hubbard Model with lattice cou-
pling, at V ∗ = 1.3 ta.

quarter-filled ladder materials such as NaV2O5 by treat-
ing the extended Hubbard model with and without cou-
pling to static lattice distortions in the c direction.
Our calculations show that the electron-lattice coupling
drastically affects the physical properties of the low-
temperature phase. It causes lattice distortions to appear
concurrently with charge ordering and with the same spa-
tial zigzag pattern. The transition to the charge-ordered
phase is shifted to a much smaller critical value of the
nearest-neighbor Coulomb repulsion (Vc ≈ 0.95 ta). The
charge gap is increased and the effective magnetic ex-
change is reduced by the electron-lattice coupling. These
results remain unchanged when two ladders are coupled.
The spin gap extrapolates to zero in all cases.

When the electron-lattice coupling is included, the
properties of both the isolated ladder and two coupled
ladders are in remarkably good agreement with exper-
imental data for NaV2O5, at an effective Coulomb re-

pulsion V ∗ = 1.3 ta determined by matching the experi-
mental lattice distortion. This Coulomb repulsion is well
within the range previously estimated for NaV2O5. As
shown in Table I, we find simultaneous agreement for the
zigzag distortion, the size of the charge order parameter,
the effective spin interaction, and for the charge gap with
experimental data.

While results for the isolated ladder without electron-
lattice coupling would also be reasonably consistent with
the experimental values, an unrealistically large value for
the Coulomb repulsion, V ≃ 2.5 ta, would be required,
and the experimentally observed lattice distortion would
be not present. The value of the Coulomb repulsion nec-
essary for such an agreement becomes still larger when
two ladders without electron-lattice interaction are cou-
pled.

We conclude that an interplay of charge ordering
and lattice distortion can drive the phase transition
to a charge-ordered state in NaV2O5, independent of
the occurrence of a spin gap. The explanation of the
spin gap will likely require a unit cell with at least four
coupled ladders. Corresponding work is in progress.
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