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Creation and destruction of a spin gap in weakly coupled quarter-filled ladders
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We investigate weakly coupled quarter-filled ladders with model parameters relevant for NaV2O5

using density-matrix renormalization group calculations on an extended Hubbard model coupled
to the lattice. NaV2O5 exhibits super-antiferroelectric charge order with a zigzag pattern on each
ladder. We show that this order, with a periodicity of four ladders, causes a spin dimerization along
the ladder and a corresponding spin gap of the same magnitude as that observed experimentally.
The spin gap is destroyed again at large charge order due to a restructuring of the spins. An analysis
of an effective spin model predicts a re-creation of the gap by inter-ladder singlets when the charge
order increases further.

PACS numbers: 71.10.Fd, 71.38.-k, 63.22.+m

The discovery of a phase transition at TC ≈ 34K
[1] in NaV2O5, below which charge order and a spin
gap appear [2], has precipitated intensive theoretical in-
vestigation. NaV2O5 consists of well-separated planes
which contain weakly coupled quarter-filled vanadium
ladders [3] (Fig. 1). They can be described by an ex-
tended Hubbard model (EHM) [2]. A zigzag charge or-
der as observed in NaV2O5 [4] is already created in this
model by the nearest-neighbor Coulomb repulsion V for
an isolated ladder, but only at overly large values of V
[5, 6, 7, 8, 9, 10]. In a recent DMRG study [8], we
showed that the inclusion of a strong effective Holstein
coupling to the lattice, which was found in LDA calcu-
lations [11], reduces the required Coulomb repulsion to
a realistic value. The DMRG calculations then yielded
good agreement between theoretical and experimental re-
sults for the amount of charge order, the extent of lattice
distortion in the c-direction, the effective spin coupling
Jeff in the b-direction, and the charge gap.

However, on an isolated ladder [7, 8] the spin gap van-
ishes in the thermodynamic limit. The occurrence of the
spin gap in NaV2O5 appears to be intimately connected
to the coupling of ladders, as indicated, e.g., by the split-
ting of magnon branches [4, 12, 13]. An intriguing sce-
nario has been put forward by Mostovoy and Khomskii
[14]. It is based on the fact that the experimentally
observed unit cell of NaV2O5 in the ordered phase is
2a × 2b × 4c [15, 16]. The charge order then has a peri-
odicity of four parallel ladders in the a-direction, and is
thus super-antiferroelectric (SAF) [17]. The correspond-
ing polarization of the electrons on the rungs is illustrated
by wide-narrow ellipses in Fig. 1(b) (top). Each ladder
exhibits antiferroelectric charge order along the ladder
(generally called zigzag charge order) as well as an anti-
ferroelectric order to the next nearest ladder. The lad-
ders correspond to effective antiferromagnetic spin-1/2
chains in the b-direction. For each ladder, the two clos-
est sites on the neighboring in-plane ladders alternate be-
tween low charge occupation [indicated by dashed loops
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FIG. 1: Quarter-filled coupled ladders in NaV2O5. The map-
ping of a rung (top) onto an effective spin site (bottom) is
illustrated for (a) a charge-disordered and (b) a SAF-ordered
regime. The shifted periodic boundary conditions in the a-
direction are indicated by numbers which identify identical
sites. The proposed singlet formation for NaV2O5 is depicted
by dashed ellipses in the effective spin model (b, bottom).

in Fig. 1(b)] and large occupation. Large charge occupa-
tion should effectively weaken the electron hopping along
the ladder, both through purely electronic interactions as
well as by pushing away the neighboring oxygen atoms
and thus reduce the spin coupling. With SAF charge
order, the effective spin chains are therefore dimerized,
which was proposed to lead to the formation of spin sin-
glets [Fig. 1(b), bottom] and to the observed spin gap.
This scenario is difficult to evaluate quantitatively. It has
been investigated using exact diagonalization [4, 9, 18] on
small clusters and by means of an approximate xy-model
together with a mean-field approximation [17]. It has also
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been argued that the mechanism proposed by Mostovoy
and Khomskii cannot work for NaV2O5 [19].

In the present paper, we use the Density Matrix Renor-
malization Group (DMRG) to study the extended Hub-
bard model with coupling to the lattice [8] for large sys-
tems of coupled ladders up to length 20, with periodicity
of four ladders in the a-direction. We show that the sce-
nario proposed by Mostovoy and Khomskii indeed works.
In the thermodynamic limit, it produces a dimerization
and a spin gap of similar size to that seen in the exper-
iment. The spin gap appears concurrently with charge
ordering and is found only in the case of the 4-ladder
SAF order; it does not appear for charge ordering with 2-
ladder periodicity. Surprisingly, the spin gap closes again
at large Coulomb repulsion V . We explain this behavior
by considering an effective spin model for which DMRG
calculations on larger systems with lengths of up to 120
rungs are possible.

Model. We use the extended Hubbard model with
coupling to the lattice as introduced in Ref. 10, H =
HEHM + Hl + He-l, where

HEHM = −
∑

〈ij〉,σ

tij

(

c†iσcjσ + h.c.
)

+U
∑

i

ni↑ni↓ +
∑

〈ij〉

Vijninj , (1)

with hopping matrix elements from first-principles calcu-
lations [3, 11, 20], ta = 0.35 eV, tb = 0.5 ta, tab = 0.17 ta
and 0.33 ta, and a uniform on-site repulsion U = 8.0 ta.
The lattice and the corresponding model parameters
are illustrated in Fig. 1(a). Since the nearest-neighbor
Coulomb repulsion V is difficult to estimate, we investi-
gate the functional dependence on this parameter. Re-
cent LDA calculations [11] have shown that there is a
very large Holstein-like coupling to out-of-plane move-
ments of oxygen atoms, which can be modeled by in-

cluding the terms Hl = κ
∑

i
z2

i

2 and He-l = −C
∑

i zini,
with κ = 0.125 ta and C = 0.35 ta, and zi in units of
0.05 Å, in the Hamiltonian. We treat these movements
adiabatically like in Refs. 10 and 8. The optimal con-
figuration for the distortions zi is then a zigzag-pattern
[8] with amplitude zopt, for which we take the results
from an isolated ladder [8]. This simplification is reason-
able since we showed in Ref. 8 that distortions remain
unchanged in the case of two coupled ladders with peri-
odic boundary conditions (pbc) in the a-direction. Then,
Hl becomes an irrelevant constant and He-l reduces to a
zigzag alternation of the local chemical potentials.

In order to investigate the proposal by Mostovoy and
Khomskii, a system with a periodicity of four ladders
is necessary. Within the DMRG, calculations on an ex-
tended Hubbard model of four coupled ladders would be,
however, too restricted in length. We therefore employ
a system of only two coupled ladders of length up to 20,
but with shifted periodic boundary conditions, as illus-
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FIG. 2: Examples of finite-size extrapolations for (a,b) the
spin gap ∆S and (c,d) the dimerization d of (a,c) the Hub-
bard model and of (b,d) the effective spin model. Linear and
quadratic fits in 1

L
are illustrated for charge-disordered states

(mCO = 0, circles) and SAF-ordered states (mCO > 0).

trated in Fig. 1. They ensure the proper periodicity and
the same SAF structure of neighboring charges in the or-
dered phase as in a four-ladder system. We apply open
boundary conditions (obc) in the b-direction.

Results. We calculate the spin gap using [7]

∆S(L) = E0(L, N, Sz = 1) − E0(L, N, Sz = 0) ,

where E0 is the ground state energy, L is the length of
each ladder, N = L/2 is the number of electrons, and Sz

is the total spin in z-direction. The results are extrap-
olated using linear and quadratic fits in 1/L, including
L = (8), 12, 14, 16, 20, as illustrated in Fig. 2(a). Due to
broken translational invariance in the b-direction (obc),
we can define a spin dimerization d as

d =
1

2

1

4

∑

l=I,II

∑

i

(−1)i 〈Ŝz
i,l (Ŝz

i+1,l − Ŝz
i−1,l)〉 ,

where i counts the rungs in the b-direction. We restrict
∑

i to four rungs in the middle of each ladder (l = I, II).
Here Sz

i,l is the sum of the Sz-spin at the i-th rung. The
dimerization d is an indicator for bond alternation and
spin singlets along the ladder, as illustrated in Fig. 1(b)
(bottom). Translational invariance in the b-direction is
additionally broken by the lattice distortions, and we
then find the contributions to d to be positive on both
ladders. A state consisting of consecutive singlets in the
a-direction [Fig. 1(b), bottom] would give the maximum
value for d, i.e., |dmax| = 1/4. The charge order parame-
ter mCO is given by [10]

m2
CO =

1

N2〈n〉2

∑

ij

eiQ(Ri−Rj)
(

〈ninj〉 − 〈n〉2
)

,
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FIG. 3: Results for the EHM with coupling to the lattice, as
a function of V . Extrapolated values of (a) the charge order
parameter mCO, (b) the spin gap ∆S, and (c) the dimeriza-
tion d are illustrated for two coupled ladders (tab = 0.17 ta).
The effective magnetic exchange constant Jeff [8] and the dis-
tortion zopt [8] of an isolated ladder are also shown in (a).
The three regimes discussed in the text are highlighted.

where Q = (π, π) and N is the total number of sites on
the ladder. We calculate m2

CO for each ladder separately
and then average.

In the thermodynamic limit, we obtain the results
shown in Fig. 3 for the charge order parameter mCO,
the spin gap ∆S, and the dimerization d, as a function
of V . For comparison, we also show the lattice distor-
tion zopt and the effective spin coupling Jeff, which were
determined for an isolated ladder in Ref. 8. Here mCO

corresponds to charge occupations (1 ± mCO)/2 of two
inequivalent sites and becomes finite concurrently with
zopt. We can identify three different regimes:
(i) For small nearest-neighbor Coulomb repulsion
V ≤ 0.95 ta, the lattice distortion and the charge order
are both zero. The estimation of the spin gap ∆S is dif-
ficult, as illustrated by the relatively large disagreement
between the linear and the quadratic extrapolations in
that regime. From calculations on a system with pure
pbc in the a-direction [8] and from considerations of an
effective spin model (see below), we expect a vanishing
gap in the 2d thermodynamic limit as long as mCO = 0.
The dimerization d, which is expected to be zero in this
regime, shows slightly negative values, probably due to
finite-size effects.
(ii) At a critical VC ≈ 0.95 ta [8], the lattice distortions
become finite and cause charge ordering in a SAF pat-
tern for our choice of boundary conditions. Linear and

quadratic extrapolations to L = ∞ match quite well and
we find that the spin gap ∆S and the intra-ladder dimer-
ization d are finite. This is in contrast to the non-SAF
charge-ordered system of two coupled ladders with purely
periodic boundary conditions studied in Ref. 8, which
shows neither a finite spin gap nor finite dimerization
in the thermodynamic limit. The concurrent appearance
of intra-ladder dimerization and a spin gap only when
SAF charge ordering occurs strongly indicates that here
charge ordering indeed causes singlet formation along the
ladder.
(iii) At larger V ≈ 1.6 ta, the spin gap vanishes again, to
our initial surprise. Concurrently, the dimerization be-
comes smaller, but does not completely disappear. This
behavior and the negative extrapolations for the spin gap
are consistent with the effective spin system (see below).

Regime (ii) can be associated with NaV2O5 because
it provides a description for the concurrent appearance
of lattice distortions, zigzag charge order, and the open-
ing of a spin gap in the low temperature phase. At the
effective V = 1.3 ta previously determined [8], the spin
gap is of the same magnitude as in NaV2O5 (∆exp

S ≈
10 meV = 0.029 ta [2]). Calculations for different inter-
ladder hopping strengths tab show that the maximal size
of the gap increases with tab (tab = 0/0.17/0.33 ta ⇒
∆S,max ≈ 0/0.025/0.05 ta), but that concurrently the
transition from regime (ii) to (iii) appears at smaller
V (for tab = 0.33 ta at V ≈ 1.4 ta), corresponding to
smaller mCO. In summary, finite SAF charge ordering
and inter-ladder hopping tab are both necessary to pro-
duce dimerization and a spin gap, while very large charge
order destroys the spin gap again.

Effective spin model. In order to better understand
the behavior of the spin gap in the EHM, we consider an
effective spin model for NaV2O5 which was introduced
in Ref. 13. This model allows us to investigate much
larger systems – up to length L = 120 – and thus to ex-
trapolate results to the thermodynamic limit more accu-
rately. By replacing the quarter-filled rungs (one electron
on each rung) by a single effective spin site, we obtain the
the Heisenberg spin model whose lattice structure is de-
picted in Fig. 1(a) (bottom) with two different magnetic
exchange constants, J0

b along the effective chains, and
J0

ab, inter-chain. The chains in this effective spin model
correspond to the ladders of the original system. In the
SAF charge-ordered state with weakly coupled effective
chains [Fig. 1(b)], the magnetic exchange J0

ab differen-
tiates to three different values depending on the posi-
tions of the electrons on the interacting rungs [13]: large
J ′ = J0

ab (1 + mCO)2, medium J ′′ = J0
ab (1 − m2

CO), and
small J ′′′ = J0

ab (1 − mCO)2, as illustrated in Fig. 1(b).
The bond alternation along the b-direction is taken to be
J1/2 = Jb (1 ± δ), where Jb = J0

b (1 − m2
CO), and we set

δ(mCO = 0) = 0 and δ(mCO ≈ 0.44) ≈ 0.034 [13]. As-
suming a linear dependence yields δ(mCO) ≈ 0.076 mCO.
Together with J0

ab/J0
b = 1/45 [13] (or J0

ab/J0
b = 1/25),
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FIG. 4: Effective spin model. Quadratically extrapolated val-
ues (L = ∞) for (a) the spin gap ∆S and (b) the dimerization
d, as a function of the charge order parameter mCO. Cal-
culations with obc (black dots) and pbc (open circles) in the
b-direction are shown. For comparison the spin gap ∆S for
the EHM is shown, in units of Jeff [Fig. 3(a)].

where J0
ab and J0

b are the exchange constants at mCO = 0,
the parameters of the effective spin model are completely
determined and the behavior can be investigated as a
function of the strength of the charge order parameter,
mCO.

Like in the Hubbard system, we apply the DMRG to
two coupled spin chains (corresponding to two Hubbard
ladders) with shifted pbc in the a-direction and obc as
well as pbc in the b-direction. Due to the small inter-
chain couplings, the finite-size effects in the a-direction
are small [21], justifying calculations on only two coupled
effective chains. A quadratic extrapolation [Fig. 2(b),(d)]
of the finite system sizes (L = 20−120 for obc, L = 20−60
for pbc) to the thermodynamic limit provides the mCO-
dependence of dimerization d and spin gap ∆S. The
dimerization and the spin gap increase with mCO up to a
maximum (Fig. 4); then, both decrease even though the
bond alternation still increases. This behavior matches
well with the results from the EHM. In contrast, un-
coupled chains (1D spin-1/2-Heisenberg chains) show a
continuing increase of dimerization and spin gap.

The destruction of the spin gap is likely due to a re-
structuring of the singlets, which now occur with a larger
probability on the J ′-bonds. For small charge ordering,
all inter-chain exchanges are of comparable size and are
small in units of Jb. The singlet formation along the
b-direction is then only marginally influenced. On the
other hand, a large value of mCO drastically changes
the inter-chain exchanges, e.g., for mCO = 0.9 and
J0

ab/J0
b = 1/45, they become J ′/Jb ≈ 0.4, J ′′/Jb ≈ 0.02,

and J ′′′/Jb ≈ 0.001. The large inter-chain exchange
J ′ destroys the spin gap and causes a restructuring of
the singlets. For pbc along the ladder [open circles in

Fig. 4(a)] a re-creation of the spin gap is observed af-
ter passing a critical charge ordering m∗

CO. In contrast,
obc-calculations (black dots) show a vanishing gap for all
mCO ≥ m∗

CO, although both calculations match excel-
lently for mCO < m∗

CO [Fig. 4(a)]. This strongly suggests
a singlet formation on the J ′-bonds [5] with increasing
J ′. In the case of obc, unpaired spins are then present
at the ends of the ladders [Fig. 1(b)], preventing a spin
gap. This explanation is supported by a considerable in-
crease of inter-chain spin correlations on the J ′-bonds for
mCO > m∗

CO.

For obc, after passing the critical charge order m∗
CO,

the spin gap extrapolates to values that are slightly neg-
ative [Fig. 4(a)]. If the extrapolation is restricted to
smaller system sizes [dotted line in Fig. 2(b)], the values
become more negative. This is in agreement with the
negative extrapolations for ∆S in the Hubbard model in
the large mCO-regime [Fig. 3(b)]. The magnitude of these
negative values gives a minimal estimate of the error in
the extrapolation.

Conclusions. We have studied coupled quarter-filled
ladders in an extended Hubbard model with lattice
coupling and with model parameters appropriate for
NaV2O5. In a super-antiferroelectric charge-ordered
regime, we find spin dimerization along the ladder which
generates a spin gap that matches the experimental re-
sult. This provides strong support for the mechanism of
Mostovoy and Khomskii [14]. The spin gap will likely
be further enhanced by in-plane atomic movements due
to the super-antiferroelectric order [14, 19, 22, 23, 24].
The super-antiferroelectric charge-ordered state provides
a possibility to understand the concurrent appearance
of charge order, lattice distortions, and spin gap in
NaV2O5. It is in agreement with experimental obser-
vations [15] and explains the puzzling properties of the
low-temperature phase. Our calculations match the ef-
fective spin model proposed by Gros and Valenti [13] and
show a vanishing spin gap at very large charge ordering
which is caused by an increased inter-ladder magnetic ex-
change and the corresponding restructuring of the spins.
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