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We present an extensive numerical study of the ferromagnetic Kondo lattice model with quantum mechani-
cal S=3/2 core spins. We treat one orbital per site in one dimension using the density-matrix renormalization
group and include on-site Coulomb repulsion between the electrons. We examine parameters relevant to
manganites, treating the range of low to intermediate doping, 0�x�0.5. In particular, we investigate whether
quantum fluctuations favor phase separation over the ferromagnetic polarons observed in a model with clas-
sical core spins. We obtain very good agreement of the quantum model with previous results for the classical
model, finding separated polarons, which are repulsive at short distance for finite t2g superexchange J�. Taking
on-site Coulomb repulsion into account, we observe phase separation for small but finite superexchange J�,
whereas for larger J�, polarons are favored in accordance with simple energy considerations previously applied
to classical spins. We discuss the interpretation of compressibilities and present a phase diagram with respect
to doping and the t2g superexchange parameter J� with and without Coulomb repulsion.
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I. INTRODUCTION

The ferromagnetic Kondo lattice model has been widely
used as a minimal model to describe some features of the
manganites1 La1−xSrxMnO3, La1−xSr1+xMnO4, and
La2−2xSr1+2xMn2O7. The model contains one itinerant eg or-
bital and the t2g core spin at each site. The eg electrons are
ferromagnetically coupled to the S=3/2 core spins generated
by the fully occupied t2g orbitals. The large ferromagnetic
Hund’s rule coupling leads to the formation of two bands, the
lower and upper Kondo bands, with the eg electrons pre-
dominantly parallel to the core spins in the lower band. The
core spins strongly influence the mobility of the eg electrons
via double exchange �DE�. At high hole density, this leads to
a ferromagnetic arrangement of the core spins, while antifer-
romagnetism is preferred for the completely filled lower
Kondo band. In the opposite case of an empty Kondo band,
the t2g core spins are antiferromagnetically oriented due to
superexchange.

Since the core spins have a fairly large spin, S=3/2, they
are frequently approximated by classical spins, greatly sim-
plifying calculations. Furthermore, the on-site Coulomb re-
pulsion U between the eg electrons is often neglected be-
cause double occupancy is already suppressed by the Hund’s
rule coupling and because its treatment considerably in-
creases the numerical effort.2 A review of these semiclassical
simulations can be found in Refs. 3 and 4, and references
therein. Several of these studies5,6 have found that phase
separation into regions with either ferromagnetically or anti-
ferromagnetically aligned core spins occurs when the lower
Kondo band is nearly empty �n�0� or nearly filled �n�1�.

In previous work by some of the current authors, also
treating the core spins classically, similar numerical results
were obtained.2,7 However, a closer analysis of the data re-

vealed that the features that had been interpreted by other
authors to indicate phase separation �a discontinuity in the
electron density versus the chemical potential, a pseudogap
in the one-particle density of states� were, in fact, due to
small, independent ferromagnetic polarons. Likewise, ferro-
magnetic polarons have been found for the almost empty
lower Kondo band, for localized S=1/2 quantum spins.8,9

For the antiferromagnetic Kondo model,10 small ferromag-
netic droplets were predicted by Kagan et al.11 The question
arises whether the correct quantum-mechanical treatment of
the S=3/2 core spins would favor phase separation instead
of independent ferromagnetic polarons, especially for T=0.
In this paper, we address the influence of quantum spins on
this issue.

The impact of a quantum-mechanical treatment of spins
on models for the manganites has been addressed in Refs.
12–15. In one dimension, quantum-mechanical core spins
with S=1/2 were employed in a number of studies con-
ducted with the density-matrix renormalization group
�DMRG�.8,9,16,17 Recently, Garcia et al.18 presented a phase
diagram for S=1/2, which, however, was determined for
only three values of the density and did not address the
physically interesting region of doping, x�1/3, treated in
this paper. Quantum-mechanical spins with S=3/2 have
been briefly addressed in an exploratory study.6 The authors
report phase separation when the lower Kondo band is nearly
filled.

In this work, we present extensive calculations for the
one-dimensional �1D� ferromagnetic Kondo lattice model
with S=3/2 core spins using the DMRG. We observe that
quantum spins yield results in very good agreement with
previous calculations2 for a model with classical core spins:
for finite t2g superexchange J�, polarons are favored over
phase separation. In addition, we include an on-site Coulomb
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repulsion U between the eg electrons: accordingly, the super-
exchange parameter J�, which favors antiferromagnetic
�AFM� alignment of the core spins, is renormalized and the
effective antiferromagnetic coupling Jeff is weakened. This
leads to an increased polaron size for large J� and phase
separation for small J�.

The remainder of this paper is organized as follows. In
Sec. II, we define the model Hamiltonian, for which we
present DMRG results in Sec. III. We discuss the ground-
state configurations in Sec. III A. In Sec. III A 1, we show
that the polarons are actually repulsive at short distance. We
then discuss the impact of the antiferromagnetic t2g superex-
change J� and of the Hubbard repulsion U and show that
quantum-mechanical core spins are very well approximated
by classical spins �Sec. III A 2�. We discuss the transition to
the homogeneous ferromagnetic chain in Sec. III A 3 and
present a phase diagram in Sec. III B. Negative compressibil-
ity and the discontinuity in the density versus the chemical
potential are often taken as a sign for phase separation. In
Sec. III C, we argue that negative compressibility is an un-
certain result when obtained from numerical methods such as
the DMRG, quantum Monte Carlo, or exact diagonalization
and show that a discontinuity in the density can equally well
result from small independent polarons. Finally, Sec. IV
summarizes and discusses the results presented in this work.

II. MODEL HAMILTONIAN AND METHOD

We study the ferromagnetic Kondo lattice model with lo-
calized quantum core spins S=3/2 and one orbital per site,
including a small Heisenberg-like superexchange between
the core spins as well as an on-site Coulomb repulsion U
between the eg electrons

Ĥ = − �
�ij�,�

tci�
† cj� + U�

i

n̂i,↑n̂i,↓ − JH�
i

s�i · S� i + J��
�ij�

S� i · S� j ,

�1�

where ci� �ci�
† � creates �destroys� an eg electron with spin �

at site i, n̂i,�=ci�
† ci� is the corresponding density operator, S� i

is the core spin at site i, and s�i the electron spin. The first
term describes the electron hopping; the hopping integral t
=1 will be used in the following as the unit of energy. The
second term describes the Coulomb repulsion for the eg elec-
trons; we will treat U=0 and U=10. The third term describes
the ferromagnetic Hund’s rule coupling between the eg elec-
trons and the t2g core spins. In this work, we take JH=8,
which corresponds to JH=6 in Refs. 19 and 2, if one com-

pensates for the normalization of classical core spins to �S� �
=1. The last term describes an additional direct superex-
change between the core spins. For manganites, this effective
interaction favors antiferromagnetic ordering of the core
spins, i.e., J��0. We vary J� from J�=0 to J�=0.02. Note
that J�=0.01 corresponds to J�= 9

4 �0.01�0.02 in the units
of Refs. 19 and 2.

We employ the density-matrix renormalization group,
keeping up to 1000 states at each DMRG iteration and treat-
ing chains of length L=24 with open boundary conditions.
The discarded weight is at most of order 10−6 for the results

presented here. Our calculations indicate, however, that 48
states, as used in Ref. 6, would lead to insufficient accuracy
for the system sizes treated here.

III. DMRG RESULTS

A. Ground-state configurations

1. Polarons are repulsive

Figure 1 shows the on-site electron density and the
nearest-neighbor core spin correlation �SiSi+1� for a DMRG
ground state for a chain of length L=24 for J�=0.01 and U
=0 with three holes. The holes clearly form three individual
polarons, each extending over approximately three sites with
ferromagnetically aligned core spins that are embedded in an
antiferromagnetic background.

Since the DMRG is a variational method, convergence to
the true ground state is not guaranteed. Therefore, we have
checked the consistency of the ground state by trying differ-
ent system buildup strategies with respect to particle injec-
tion for many parameter sets. Thereby, we have examined
whether there is degeneracy of states with respect to polaron
positions and how far the existence of well-separated po-
larons and their positions are determined by the details of the
DMRG algorithm. In addition, one can perform calculations
with different z components Sz

tot of the total spin Stot; increas-
ing Sz

tot reduces the size of the Hilbert space. This, in general,
allows for more accurate results, while the smaller Hilbert
space still contains the ground state as long as Sz

tot�Stot.
In an L=24 system with two holes �J�=0.01,U=0�, we

always find two polarons regardless of how the system is
built up. All energies obtained are degenerate within the es-
timated numerical accuracy. The polaron position, however,
depends on where the particles are injected. In all cases, we
find polarons that are separated by at least a few lattice sites
with AFM order. Even if we add both holes simultaneously
during the system buildup, they separate into two polarons.
Therefore, we conclude that well-separated polarons are ef-
fectively independent, while they seem to repel each other at
short distances.

FIG. 1. Local density �ni� and core spin-core spin correlations
�SiSi+1� of the DMRG ground state for a chain of length L=24 with
J�=0.01 and U=0. Three well-separated polarons can be clearly
seen.
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We estimate the energy connected to this repulsion
by introducing small electrostatic potentials Epot=−0.1 in
order to trap the holes at sites x1 and x2. For all distances
d= �x2−x1�	3, we obtain FM polarons covering three lattice
sites with on-site densities symmetric with respect to x1 and
x2. The ground-state energy as a function of the distance d
= �x2−x1� is shown in Fig. 2, which corroborates the fact that
polarons separated by two or more sites are effectively inde-
pendent. The configuration with only one intermediate site is

E�0.01 higher in energy, and in order to obtain a state
with adjacent polarons 
E�0.03 has to be paid.

We therefore conclude that the holes actually have a re-
pulsive interaction at short range and that separated polarons
are energetically favored over phase separation into larger
FM and AFM regions near the half-filled Kondo band for
J�=0.01 and U=0.

The fact that we can obtain degenerate states with a lo-
calized polaron at different positions upon doping with one
hole suggests that polarons are quasiparticles having a large
effective mass. For physical reasons, we would expect that a
single polaron delocalizes, forming a heavy Fermi liquid, but
it appears that polarons have a bandwidth that is too small to
be resolved by the DMRG.

2. Influence of J� and U and comparison to classical spins

In Ref. 2, the energy for phase separation was compared
to that for independent polarons as a function of an effective
superexchange Jeff of classical core spins for the almost-
filled lower Kondo band �n�1�. At small values of Jeff, an
increase in the optimal polaron size was found and bipo-
larons and phase separation dominated. The effective ex-
change Jeff is defined in terms of the t2g superexchange J�
and the energy �ex for virtual excitations into the upper
Kondo band

Jeff � J� +
t2

�ex
. �2�

Without Coulomb repulsion, �ex is given by the energy for
the low-spin state 3E.20 For finite Hubbard U, the energy for

the virtual excitations is higher, however, because they lead
to doubly occupied sites for n�1; �ex is then given by the
energetically higher 4E and 4A2 states.21 Taking into account
Coulomb repulsion should therefore have an effect similar to
reducing J�.

The spinless fermion model with classical core spins19

forms polarons for J�=0.01 �corresponding to J��0.02 in
the units of Ref. 2�, but for J�=0, the polarons tend to attract
each other and phase separate. This can be seen by examin-
ing the dressed core spin correlation function

Sh�r� =
1

L − r
�
i=1

L−r

ni
hSiSi+r, �3�

where ni
h= �1−ni↑��1−ni↓� gives the hole density relative to

the half-filled chain, i.e., it is only nonzero if the site is
unoccupied. We have evaluated this observable for the clas-
sical model with J�=0. The result, depicted in Fig. 3, shows
that the ferromagnetic regions around the holes grow with
doping �i.e., that the polarons attract each other and tend to
phase separate�.

The dressed core spin correlation function Sh�r� is shown
for quantum-mechanical core spins and U=0 in Fig. 4. For
J�=0.01 the size of the ferromagnetic regions around the
holes does not grow with doping in accordance with our
analysis in Sec. III A 1. In the case of J�=0, we observe
phase separation also for the quantum model, which is re-
flected in the pronounced increase of FM correlations with
doping in Fig. 4�b�. Without an on-site Coulomb repulsion
U, we find that the spinless fermion model2 agrees qualita-
tively very well with the present DMRG results, confirming
that localized S=3/2 spins are well approximated by classi-
cal spins.

If ones takes a closer look at the numerical values of the
dressed core spin correlation function for both models, one
has to keep in mind that states with double occupation have

FIG. 2. Ground-state energy E0 as a function of the distance d of
two polarons on an L=24 site chain with J�=0.01, U=0. The holes
are centered at the position of electrostatic impurity potentials
Epot=−0.1 and exhibit a symmetric density distribution. The ener-
gies for d	5 are degenerate within the estimated numerical accu-
racy as designated by the error bars.

FIG. 3. �Color online� Dressed core spin correlation function,
Eq. �3�, for classical core spins with effective spinless fermions for
J�=0, U=0, inverse temperature �=1/T=100, and an L=24 site
chain. The ferromagnetic area grows with doping, indicating phase
separation.
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been projected out in the classical case, while such states are
included in the DMRG calculations. In the latter case, there
is a finite hole density �ni

h��0.014 at sites i within the AFM
background far from polarons, and still higher hole densities
can be observed in the proximity of polarons. These contri-
butions of the AFM background to the dressed core spin
correlation function �3� partly cancel the FM terms from
within the polarons in the quantum model; this accounts for
the almost vanishing nearest-neighbor correlation
Sh�1� /Sh�0��0 for one hole shown in Fig. 4�a�.

The inclusion of a finite Hubbard U=10 decreases the
effective exchange Jeff as discussed above and therefore in-
creases the tendency to phase separation. In fact, phase sepa-
ration takes place even for J�=0.01, which is reflected in the
dressed core spin correlations in Fig. 5.

3. Transition to the homogeneous ferromagnetic phase

We first examine the polaronic case J�=0.01 and U=0,
where the polarons extend over approximately three sites.
The ground state of an L=24 chain for x=1/4 �six holes�
shown in Fig. 6�a� corresponds to a periodic arrangement of
polarons, in agreement with the energy considerations of
Sec. III A 1. Similar “island phases” have also been found
for S=1/2 core spins at commensurate fillings.16 They con-

sist of small ferromagnetic islands that are aligned antiferro-
magnetically or have one antialigned spin between them.
Adding one more hole, we find that the polaronic configura-
tion is destroyed and a large FM region forms with two
AFM-arranged spins at each end �see Fig. 6�b�	. This could
be a sign of phase separation; but, much larger chains would
have to be treated in order to clarify this issue. For dopings
of x=0.375 �nine holes on an L=24 chain�, we observe com-
plete FM polarization.

When the core spin superexchange is increased to J�
=0.02 �still neglecting Coulomb repulsion U=0�, polaronic
states become stabilized up to dopings of x=1/3 and we find
another island phase of AFM-stacked polarons for eight
holes �see Fig. 7�a�	. The result for nine holes in Fig. 7�b�
suggests phase separation between an island phase and a FM
region; however, chains of length L=24 are too small to
make definitive statements. As the treatment of much larger
systems is not feasible using currently available computa-
tional resources and the main focus of this paper is the
almost-filled lower Kondo band, we did not investigate the
nature of the phase transition further. We finally note that
upon doping the L=24 chain with ten or more holes, com-
plete FM polarization is obtained �not shown�.

For parameters J�=0.02 and U=10, the polaronic regime
extents up to x=1/4 �6 holes�, so the transition to ferromag-
netism is very similar to the one obtained for J�=0.01 and

FIG. 4. �Color online� Dressed core spin correlation, Eq. �3�, for
quantum-mechanical core spins for U=0 and �a� J�=0.01 and �b�
J�=0 on an L=24 site chain. In the polaronic regime �a�, there is no
dependence of the size of the ferromagnetic area on doping, in
contrast to the phase separated case �b�.

FIG. 5. �Color online� Dressed core spin correlation, Eq. �3�, for
quantum-mechanical core spins for U=10 and �a� J�=0.01 and �b�
J�=0 on an L=24 site chain. The pronounced dependence on dop-
ing indicates phase separation.
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U=0. We find an island phase as already shown in Fig. 6�a�
and for seven holes a configuration similar to the one shown
in Fig. 6�b�. At dopings of eight holes �x=1/3� complete FM
polarization is obtained for J�=0.02 and U=10.

B. Phase diagrams

We summarize the impact of the parameters J� and U in
phase diagrams in the n−J� plane, where n=1−x designates
the filling and J� refers to the t2g superexchange. Figure 8
shows the phase diagram for an L=24-site chain without
Coulomb repulsion, U=0. One sees a polaronic region �P�
near the filled lower Kondo band, including periodic arrange-
ment of polarons �island phase, denoted as ILP� for commen-
surate fillings. For large J��0.01, this region extends to hole
densities x�1/3, while phase separation is found for vanish-
ing J�=0.

Some of our results indicate that there might be phase
separation for intermediate fillings between polaronic and
FM phases at J��0. However, much longer chains would be
needed to clarify this issue; see also our discussion in Sec.
III A 3. Corresponding states with a large central FM region
and either some AFM sites or polarons at both ends �cf. Figs.
6�b� and 7�b�	 have been designated as FR in the phase dia-
gram. Regions are labeled FM if all nearest-neighbor spin
correlations are positive.

For U=0 and J�=0, we find phase separation �PS�: By
varying the system buildup, we are able to obtain both po-
laronic configurations and states with a larger FM region
embedded in an AFM background; for these parameters, the
phase-separated states always have a lower energy.

Although we expect macroscopic polarization in the ther-
modynamic limit near the empty Kondo band, as also ob-
served in 1D for the t− t�−U model22,23 and a Cu-O chain,24

we did not investigate the extent of polarization for finite
systems in detail. We note that saturation should not be ex-
pected for quantum spins in the thermodynamic limit accord-
ing to Ref. 15.

Figure 9 shows the phase diagram for Coulomb repulsion
U=10. Comparing to U=0, we see that the polaronic phase
is suppressed at lower doping and phase separation takes
place even for J�=0.01. This is consistent with the reduction
in the effective parameter Jeff with increasing U. For param-
eters J�=0.01 and U=10, we find that two holes can gain

E�0.008, forming a bipolaron instead of two separated

FIG. 6. On-site density �ni� and core spin-core spin correlations
�SiSi+1� of the DMRG ground state for J�=0.01, U=0 and �a� 6
holes �x=1/4� and �b� 7 holes.

FIG. 7. On-site density �ni� and core spin-core spin correlations
�SiSi+1� of the DMRG ground state for J�=0.02, U=0 and �a� 8
holes �x=1/3� and �b� 9 holes.

FIG. 8. �Color online� Phase diagram in the n−J� plane for U
=0. The symbols designate the following characteristics: P, po-
larons, ILP, island phase �periodic arrangement of polarons�; PS,
phase separation; FM, ferromagnetic; and FR, central ferromagnetic
region with antiferromagnetically oriented sites at the ends of the
chain. The symbols �letters� are determined for an L=24 site chain.
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polarons. Compared to the energy E�−137.318 of the bipo-
laronic state, the energy difference is rather small and this is
one reason for the sensitivity of the DMRG with respect to
system buildup. If there are states very close in energy but
far apart in phase space, numerical results will strongly de-
pend on the initial configuration. We have designated the
corresponding parts with PS in Fig. 9.

C. Compressibility

The inverse compressibility of a system can be computed
approximately by numerical differentiation of energies by


−1 =
Ne

2

L

E�Ne + 
,L� + E�Ne − 
,L� − 2E�Ne,L�

2 , �4�

where E�Ne ,L� is the total energy of a chain with Ne elec-
trons on L sites and 
 is the difference in particle number.
Negative values are sometimes taken to be an indication of
phase separation.6

We want to argue that this condition is neither necessary
nor sufficient. On the one hand, negative values only result
from finite-size effects and should vanish in the thermody-
namic limit leading to 
−1→0, as will be discussed below.
On the other hand, we will show in Fig. 10 that polarons can
cause 
−1�0 as well. Such observations therefore always
have to be complemented by an investigation of correlation
functions, e.g., the dressed core-spin correlation �Eq. �3�	 in
order to show the existence of two distinct phases.

First, we note that numerical methods, such as the DMRG
or Monte Carlo calculations, which do not impose homoge-
neity, as, for instance, mean-field theory would, should yield
separated phases in different spatial regions in a proportion
that minimizes the free energy—in effect, the system per-
forms the Maxwell construction by itself and should thus
avoid negative compressibilities in the thermodynamic limit.

For phase separation on finite systems, however, negative
compressibilities 
−1�0 can indeed arise because the sur-
face separating the two phases also contributes to the total
energy. �From the occurrence of PS, it can be inferred that
the phase boundary is not energetically favorable because the
system would otherwise tend to maximize instead of mini-
mizing it and form many small droplets or a mixed phase.� If
this boundary has high-enough energy and grows with dop-
ing, its contribution to the total energy leads to a negative
compressibility.

In the thermodynamic limit L→�, such surface terms be-
come negligible compared to the bulk contributions, imply-
ing 
−1→0. Moreover, the boundary surface does not have

to grow with doping at all. In the present one-dimensional
case, the phase boundary always consists of just two bonds
connecting the two phases regardless of their size. For this
reason, one could obtain 
−1�0 here even for finite systems.
In addition, one has to keep in mind that numerical differen-
tiation is notoriously sensitive to even small numerical errors
of the ground-state energies entering Eq. �4�.

A discontinuity of the density n as function of the chemi-
cal potential � is equivalent to the limit of infinite compress-
ibility 
−1→0, and is likewise taken as an indication for
phase separation. We will here show that it can arise from

FIG. 9. �Color online� Phase diagram as in Fig. 8, but with U
=10.

FIG. 10. Grand canonical expectation value for the electron den-
sity �n� vs chemical potential � for J�=0.01, L=24 and �a� U=0,
�b� U=10. The dashed lines indicate the limits of the �a� polaronic
or �b� phase-separated and the FM regimes, respectively.
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independent polarons as well. In order to obtain n��� from
the DMRG calculations at fixed particle numbers Ne, we set
n���=Ne /L, where Ne minimizes the grand canonical expec-

tation value �Ĥ−�N̂�=E�Ne ,L�−�Ne. The results for chains
with L=24, J�=0.01, U=0 and U=10, respectively, are
shown in Fig. 10.

We find a jump near n�1 both for U=10, where PS is
observed, as well as for U=0, where we see polarons. In the
latter case, it can be accounted for by the independence of
the polarons at low doping, i.e., adding each polaron costs
the same energy, which is balanced by the chemical potential
�*=�pol.

2,7 This also corresponds to our observation that the
ground-state energy per site as a function of filling �not
shown� lies practically on an straight line near n=1 with
dE /dn=�pol.

In conclusion, we have argued that a negative compress-
ibility for a finite system is neither a necessary nor a suffi-
cient condition for phase separation. It is also important to
note that a discontinuity of the density n as function of the
chemical potential � is a necessary condition for phase sepa-
ration, but is not a sufficient condition because other mecha-
nisms, such as independent polarons, can induce a “jump” of
n��� as well.

IV. CONCLUSIONS

We have presented an extensive numerical study of the
one-dimensional ferromagnetic Kondo lattice model with
quantum-mechanical S=3/2 core spins using the density-
matrix renormalization group method, treating a nondegen-
erate conduction band with and without on-site Coulomb re-
pulsion at low to intermediate doping. In particular, we have

explored the similarities with the analogous model with clas-
sical core spins, where ferromagnetic polarons have been
found to dominate over phase separation2 for parameters rel-
evant to manganites. We have investigated whether the inclu-
sion of quantum fluctuations leads to an attractive interaction
between the polarons and thus to phase separation. We find
that this is not the case: the polarons are, in fact, repulsive at
short distances. In general, the results of the quantum model
agree very well with the classical model and show that clas-
sical spins are indeed a very good approximation for manga-
nites.

Furthermore, we have investigated the influence of a rela-
tively large local Coulomb repulsion U=10, which reduces
the effective AFM coupling Jeff relevant when n�1. For
small t2g superexchange J��0.01, phase separation domi-
nates over separated polarons if on-site Coulomb repulsion is
taken into account, while polarons are favored upon increas-
ing the superexchange parameter to J�=0.02. We have sum-
marized these findings in phase diagrams in the plane of
doping and t2g superexchange J� for U=0 and U=10.

We have also argued that the observation of a �small�
negative compressibility and of a jump in the density n as a
function of the chemical potential � are not compelling in-
dicators of phase separation. Although a discontinuity of
n��� is a necessary condition for phase separation, it is not a
sufficient one: different mechanisms, such as the formation
of independent polarons, can leave similar traces.
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