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Excitation spectra of strongly correlated lattice bosons and polaritons
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Spectral properties of the Bose-Hubbard model and a recently proposed coupled-cavity model are studied by
means of quantum Monte Carlo simulations in one dimension. Both models exhibit a quantum phase transition
from a Mott insulator to a superfluid phase. The dynamic structure factor S(k,w) and the single-particle
spectrum A(k,w) are calculated, focusing on the parameter region around the phase transition from the Mott
insulator with density one to the superfluid phase, where correlations are important. The strongly interacting
nature of the superfluid phase manifests itself in terms of additional gapped modes in the spectra. Comparison
is made to recent analytical work on the Bose-Hubbard model. Despite some subtle differences due to the
polaritonic particles in the cavity model, the gross features are found to be very similar to the Bose-Hubbard
case. For the polariton model, emergent particle-hole symmetry near the Mott lobe tip is demonstrated and
temperature and detuning effects are analyzed. A scaling analysis for the generic transition suggests mean-field

exponents, in accordance with field-theory results.
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I. INTRODUCTION

The Mott insulator (MI) to superfluid (SF) quantum phase
transition in the generic Bose-Hubbard model [1] has at-
tracted a lot of attention in recent years due to the progress in
experiments on cold atomic gases in optical lattices [2].
More recently, there have also been significant advances in
the coherent coupling of single atoms and cold atomic gases
to cavity radiation (cavity quantum electrodynamics) [3,4]. A
clean realization of the Jaynes-Cummings Hamiltonian has
been achieved by coupling a superconducting qubit to a mi-
crowave cavity [5]. On the theory side, multicomponent
Bose gases coupled to light have, e.g., been shown to support
a superradiant Mott insulator phase with polariton
condensation [6].

In parallel, several theoretical proposals have shown the
possibility of having a state of strongly correlated photons or
polaritons in solid-state systems of coupled-cavity arrays
(also referred to as polariton models or Jaynes-Cummings-
Hubbard models) [7,8] and a review of work along these
lines has been given [9]. The possibility of preparing a sys-
tem of photons in a Mott state with one photon per site is a
promising starting point for quantum information processing.
An important feature shared with cold atomic gases coupled
to light is the composite nature of the polaritons. Particularly
attractive properties of cavity arrays would include accessi-
bility of local properties in measurements and scalability in
terms of size. Perhaps the most likely candidate for setting
up such a model experimentally is based on extending the
work on superconducting qubits to arrays [5,10]. In contrast
to cold atomic gases, where the interaction and/or hopping
strength can be varied, the phase transition may be observed
by changing the detuning between the two-level system and
the resonator. Analysis of coupled-cavity models is fruitful in
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its own right, as a detailed understanding of the correspond-
ing models offers insight into strongly correlated polariton
systems. An important aspect of such studies is the extent to
which such systems resemble the familiar Bose-Hubbard
physics.

From the above examples and many more in the literature,
it is apparent that interacting boson systems on a lattice are
of great interest for the progress of both theory and experi-
ment. Compared to Bose fluids, the lattice changes the phys-
ics in several aspects. Although long-range phase coherence
still gives rise to phonon excitations—despite the breaking of
translational symmetry—the quenching of the kinetic energy
makes the system much more strongly correlated [11]. Be-
sides, the lattice allows the formation of incompressible MI
states with the same integer particle number at each site.

A large amount of work has been devoted to detailed stud-
ies of the Bose-Hubbard model, leading to a wealth of
knowledge with and without additional complications such
as trapping potentials or disorder. However, the dynamical
properties and excitations in particular of the SF phase in the
vicinity of the quantum phase transition are still not com-
pletely understood. A number of authors have addressed the
dynamics of the Bose-Hubbard model in different dimen-
sions [12-23], with results providing valuable information
about the underlying physics, while corresponding work on
coupled-cavity models has just begun [24,25]. The two most
important dynamic observables are the dynamic structure
factor and the single-particle spectral function, which are
also at the heart of theoretical and experimental works on
Bose fluids [26]. Experimentally, the dynamic structure fac-
tor may be measured by Bragg spectroscopy or lattice modu-
lation (in cold atomic gases) as well as by neutron scattering
(in liquid helium), and single-particle excitations of optical
solid-state systems are accessible by means of photolumines-
cence measurements.

Whereas the standard Bose-Hubbard model only supports
MI and SF phases, the physics of the polariton models is
slightly richer. Owing to the composite nature of the con-
served particles (polaritons), these phases can either be of
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polaritonic, excitonic, or photonic character [24,27-29] with
distinct dynamic properties. Which of the cases is realized
depends on the value of the detuning between the cavity
mode and the transition frequency of the atoms that mediate
polariton repulsion. Very recently, it has been proposed that
the fractional quantum Hall effect may also be realized in
coupled-cavity arrays [30].

In general, accurate and unbiased results are very hard to
obtain. Most existing work on spectral properties in the Mott
phase is based on mean-field and/or strong-coupling approxi-
mations, in which fluctuations of the particle numbers are
more or less restricted. Results of extensive strong-coupling
expansions for the phase diagram [13,31] do, however, agree
very well with precise density-matrix renormalization group
(DMRG) [14] and quantum Monte Carlo (QMC) results
[20,21]. Bogoliubov-type descriptions have been found to
accurately describe the SF phase only in the limit of weak
interaction and fail to account for the transition to a MI and
correlation features in the SF close to the transition. Hence
the most interesting (and most difficult) regime is that near
the quantum phase transition, where quantum fluctuations
and correlation effects cannot be neglected.

In one dimension (1D), quantum fluctuation effects are
particularly pronounced and mean-field methods are in gen-
eral insufficient. Notable exceptions include situations where
coupling to additional degrees of freedom provides an effec-
tive long-range interaction [6]. An interesting aspect of 1D is
that for strong (repulsive) interaction, fermions and bosons
behave in a very similar way and that the low-energy, long-
wavelength physics is described by the Luttinger liquid
model [32].

In the present paper, we employ the directed loop quan-
tum Monte Carlo method [33], which is exact and therefore
yields unbiased results also in difficult parameter regimes.
Importantly, our simulations preserve the full quantum
dynamics.

Few nonperturbative results are available for the spectra
in the Bose-Hubbard model, namely, for the dynamical con-
ductivity [14], for the dynamic structure factor S(k,w)
[15,16] on small systems, and for the single-boson spectral
function A(k,w) in the Mott phase deduced from small sys-
tems [18], all in 1D. For the polariton model considered here,
only A(k,w) in the Mott phase has been calculated [24].

The focus of our work is therefore on the calculation of
excitation spectra for both the Bose-Hubbard model and the
polariton model within and around the first Mott lobe (i.e.,
the lobe with density one), for which comparison to recent
analytical and numerical results is made. Other issues ad-
dressed include the sound velocity in the SF phase, particle
and hole masses, as well as temperature and detuning effects
for the case of the polariton model.

Our simulations are performed at low but finite tempera-
tures. On one hand, this complicates the analysis of the re-
sults, but on the other hand, it matches the experimental
situation [26,34].

The paper is organized as follows. In Sec. II, we introduce
the two models considered. Section III contains some details
about the method. Results are discussed in Sec. IV and in
Sec. V we present our conclusions.
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II. MODELS

The polariton model we consider is the simplest among
several recent proposals [7-9,35,36]. It describes an array of
L optical microcavities, each of which contains a single two-
level atom with states || ), | T) separated by energy e. Within
the rotating wave approximation, one such cavity is repre-
sented by the Jaynes-Cummings Hamiltonian [37] (A=1),

I:I:JC =€ 1)1+ wo“jai + ([T ifa; + |li><Ti|azT)~ (1)

Here, w is the cavity photon energy and A=e—w, defines
the detuning. The atom-photon coupling g (af and q; are
photon creation and annihilation operators) gives rise to for-
mation of polaritons (combined atom-photon or exciton-
photon excitations). Allowing for nearest-neighbor photon
hopping between cavities with amplitude # leads to the lattice
Hamiltonian

; T ryiC 3
HM=_¢> a,-aj+2Hi — uN,,. (2)
) i
The conserved polariton number IVP:E,-nAI,,i, with ﬁp,i:afai

+|1){T,|, is determined by the chemical potential u [38].
Polaritons experience an effective repulsion Ugg(n,) [see Eq.
(11)] due to the nonlinear dependence of the single-site en-
ergy on the local occupation number n,. We use g as the unit
of energy and set wy/g, kg, and the lattice constant equal to
unity. The rotating wave approximation becomes unjustified
for g comparable to e. The motivation for setting g=¢€ is
direct comparison to previous work. The Hamiltonian (2) has
been studied in [7,9,10,24,25,27-29,35,38—40].
We also consider the Bose-Hubbard Hamiltonian

. Y $
HBEM = _ > bTbj+—E nin;— 1) — uN, (3)

i

(i) 27
describing soft-core bosons with repulsion U and hopping .

Here, N :E,ﬁiinbfbi is the total number of bosons and we
use U as the unit of energy.

As an alternative to the spin language used here, the po-
lariton model (2) can be written as a two-band Bose-Hubbard
Hamiltonian [41]; one boson species is itinerant, whereas the
other is immobile (corresponding to localized excitons) with
a hard-core constraint. This correspondence provides a direct
connection to recent work on cold atomic gases in optical
lattices, with the natural extension to the case where the ex-
citons are mobile as well [6].

We shall see below that owing to the composite nature of
the bosonic particles in the polariton model, it is generally
easier to understand the features of the Bose-Hubbard model
first and then explore similarities to the polariton model.
Moreover, analytical approximations are more readily avail-
able for the Bose-Hubbard model and provide insight into
the numerical data. Periodic boundary conditions in real
space are applied in all simulations and the system size is
denoted as L.

III. METHOD

We use the directed loop method [33], a generalization of
the loop algorithm [42,43], which has no systematic errors
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FIG. 1. Zero-temperature phase diagram for (a) the Bose-
Hubbard model and (b) the polariton model in 1D. We only show
the Mott lobes with density one. These DMRG results were ob-
tained by (a) Kiihner et al. [14] and (b) Rossini and Fazio [39].

and is efficient (low autocorrelations), facilitating the simu-
lation of large systems at low temperatures. We make use of
the algorithms and libraries for physics simulations (ALPS)
library [44,45] and of the ALPS applications [46], which use
the stochastic series-expansion (SSE) representation [47] of
world line path integrals. We have verified that we obtain the
correct phase boundary in 1D for selected points in param-
eter space.

In contrast to most previous QMC calculations of the
Bose-Hubbard model, the focus of the current paper is on
dynamical properties. The SSE representation has the draw-
back that dynamical correlation functions in imaginary time,
which we need to obtain spectra, are very inefficient to cal-
culate, since they involve a convolution of Green’s functions
at different SSE distances [48]. On the other hand, Green’s
functions can be measured easily in an imaginary time rep-
resentation. For this reason, we revert a mapping from con-
tinuous time to SSE [49] when measuring Green’s functions.
To each operator in a given SSE operator string, we associate
a time 7e[0,8] which is stochastically sampled out of a
uniform distribution. This maps the SSE configuration into a
world line configuration in continuous imaginary time [50].

Correlation functions of diagonal operators can then be
measured directly. For example, in the case of (5,(7)p,(0)),
we evaluate the density p;(7) on a fine time grid. This time
discretization limits the high energy range of the Green’s
function, but does not introduce any discretization error to
the QMC algorithm itself. With the Fourier transformation of
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the density Fr(p/(7))=py ., we measure the correlation func-
tion  Fr({p(1)p;(0))={prwP-r. using fast Fourier
transforms.

The evaluation of off-diagonal single-particle correlation
functions of the form (i;(7) 1,//3(0)) requires some care. We
again make use of the world line picture, in which two op-
erators " and i are inserted whenever a new loop update
starts. Let us assume that s moves around (loop head) while
/' is pinned (loop tail). The time and position of the loop tail
are set as the new origin of our coordinate system and we
store the values {a|#;(7)1(0)|8) whenever the loop head
(1) crosses a point on the time grid with distance (i, 7)
from the new origin. Here |a) and |B) are the states in the
world line configuration prior to the arrival of the loop head.
We then again use fast Fourier transformation to evaluate the
correlation functions in Fourier space.

Let us now define the observables of interest. The quan-
tum phase transition can be detected by calculating the su-
perfluid density p,, measured in the simulations in terms of
the spatial winding number w as p,=L{w?)/f [51,52], B
=1/kT being the inverse temperature. Another important ob-
servable in the context of the MI-SF transition is the total

density n=(N)/L in the Bose-Hubbard model and n

:<]§/,,>/ L in the polariton model.

Concerning dynamical properties, we compute the dy-
namic structure factor S(k, ) and the single-particle spectral
function A(k, w). The dynamic structure factor at momentum
k and energy w is given by

p

[

1 .
Sthow)=5— | d7e"{p(1pi(0))
1 E e~ PEn AF1 A2
"2 7 KKm|pilm)Pw—(E,,—E,)], (4)

with the grand-canonical partition function Z and the energy
of the nth eigenstate E,. In our simulations, S(k,w) is
obtained from

—Tw

(Bu(Mp(0) = J dwS(k. o)z 5)

by means of the maximum entropy method.

For the Bose-Hubbard model, the density operator p;=7;
and p,t:Eqb:; ++bq- For the polariton model, we can calculate
the dynamic structure factor for photons [SP'(k,w)], atoms

[S*(k,w)], or polaritons [S(k,w)] by using

aja ; for photons
pi= |Ti><Ti|

ajai+ |T){(T,| for polaritons,

for atoms (6)

respectively.
The single-particle spectral function is defined as
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Alk,w) = - :—TIm«{bk; I

e_BE" s
= gl oo - (E,-E)), (D)

where the real-space operator 12,- entering the Green’s func-
tion is given by fﬁ,-:b,- for the Bose-Hubbard model and by

Y;=a; for the polariton model. Maximum entropy is again
used to map to real frequencies.

The QMC algorithm samples the partition function in the
grand canonical ensemble. However, using only those con-
figurations which have a given number of polaritons enables
us to measure observables in the canonical ensemble as well.
Here, this simple but powerful trick permits us to study the
fixed-density phase transition which occurs in the polariton
model as a function of #/g.

The SSE representation requires to set a maximum boson
number per site. In the Bose-Hubbard model, we allow a
maximum of six bosons per site. In the polariton model, we
allow from six (Mott insulator, fixed-density transition) up to
16 (SF phase) photons per site. Convergence has been moni-
tored by plotting histograms of the photon number distribu-
tion and the cutoffs have been chosen generously such that
there was no truncation error.

IV. RESULTS

We begin with a review of the properties of the Bose-
Hubbard model and the polariton model as they emerge from
previous work. Whereas a substantial literature exists for the
Bose-Hubbard model, work on the polariton model began
only recently, based on mean-field theory [7,10], exact di-
agonalization [38], the DMRG [39], the variational cluster
approach [24], QMC [53], and strong-coupling theory [25].
Our discussion focuses on 1D and follows Fisher et al. [1]
and Kiihner et al. [14].

The Bose-Hubbard model describes the competition of ki-
netic energy and local, repulsive interaction. Depending on
the ratio /U and the density of bosons n (the system is
superfluid for any >0 if n is not integer), the Bose-Hubbard
model at temperature 7=0 is either in a MI state or in a SF
state. The MI is characterized by an integer particle density,
phase fluctuations, and a gap in the single-particle excitation
spectrum. In the SF phase, we have significant density fluc-
tuations, phase coherence, and nonzero superfluid density p;,
as well as gapless (phonon) excitations with linear dispersion
at small %.

For the case of one dimension considered here, a precise
zero-temperature phase diagram in the w/U, t/U plane has
been determined by Kiihner er al. [14] and these data are
shown in Fig. 1(a). There exists a Mott lobe inside which the
density n=1 (higher lobes with integer n>1 are not shown)
and which is surrounded by the SF phase.

There are two qualitatively different ways to make a tran-
sition from the MI to the SF [1]. The generic MI-SF transi-
tion is driven by addition or subtraction of small numbers of
particles to the incompressible MI phase, the total-energy

PHYSICAL REVIEW A 80, 033612 (2009)

cost for which is given by the distance in u direction from
the nearest phase boundary. Since additional particles or
holes (which Bose condense at 7=0) can move freely, the
gain in kinetic energy can outweigh the interaction energy,
leading to the MI-SF transition. Across the generic transition,
which is mean-field-like in character, the density varies con-
tinuously and the single-particle gap closes linearly as a
function of the distance from the phase boundary, E,x 0,
where o=t—t. or u—pm,. is the distance from the phase
boundary [1].

There also exists a MI-SF transition at fixed density,
driven by the onset of boson hopping due to the increase of
the ratio /U, i.e., by quantum fluctuations. It has been
shown that this transition occurs at the tip of the Mott lobe
and that it has a different universality class than the generic
transition [1]. In d dimensions, the universality class is that
of the (d+1)-dimensional XY model, so that in 1D, there is a
Kosterlitz-Thouless phase transition at the multicritical point.
For this case, the Mott gap E,exp(—const/\z.—1) closes
exponentially (i.e., very slowly) as a function of the distance
from the lobe tip [13] and strong deviations from the para-
bolic lobes predicted by mean-field theory [1] are observed
in both strong-coupling [13,31,54] and DMRG results [55].
Another remarkable aspect of the 1D case is the occurrence
of multiple MI-SF transitions along lines of constant chemi-
cal potential over an extended range of u=<0.2 [see Fig.
1(a)] [14,55].

The polariton model also shows a series of Mott lobes, in
which the polariton density n, is pinned to an integer [see
Fig. 1(b) for the phase boundaries of the n,=1 lobe obtained
by DMRG [39]]. Even for pinned 7, the photon and exciton
densities can fluctuate. Deep in the Mott phase and for n,
=1, we can approximate the ground state by a product over
single sites, each of which is described by the Jaynes-
Cummings eigenstates (see, e.g., [25])

In,,—)=cos O(n,)|n,, |)—sin O(n,)|n,—1,1),

n,,+) =sin 6(n,)|n,, |) +cos O(n,)|n,—1,1),  (8)

where tan 6(n,)=2g\n,/[2x(n,)-A], x(n,)=\g*n,+A*/4,
and with eigenvalues E™(n,)=—(u—wo)n,+A/2% x(n,).
Hence for fixed polariton number n,, the ground state
|np,—> is a coherent superposition of two states which differ
by the state of the atom (or spin) as well as the number of
photons; this hybridization provides the connection to exci-
ton polaritons.

The extent of the lobes in both the w and ¢ directions
diminishes quickly with increasing n, due to the reduced
polariton-polariton repulsion Ug(n,,); the =0 vertical width
of the lobes in the Bose-Hubbard model is always U. At
large values {r>w—pu ({ being the coordination number),
beyond those considered in the present work, the polariton
model shows an instability [10].

In this work, we restrict our discussion to the region in the
phase diagram in or close to the Mott lobes with density n,
=1 or n=1. This lobe is the largest in the polariton model
with zero detuning and quantum effects are most pro-
nounced. A density of one is also the most interesting case
for experimental realizations [7,24],
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All the discussion so far has been for 7=0. Both experi-
ments and our simulations are carried out at low but finite
temperatures, with several important consequences. Strictly
speaking, there is no true MI at 7>0 due to thermal excita-
tions. However, there exist quasi-MI regions which have fi-
nite but very small compressibility (see also the discussion of
temperature effects later). As long as the density remains
close to an integer, these regions may be regarded as Mott
insulating. Corresponding “phase diagrams” at finite 7 have
been obtained for both the polariton and the Bose-Hubbard
model [22,24,56]. Except for our analysis of temperature ef-
fects in Sec. IV, the simulations have been carried out at
values of B=3L, large enough to ensure that we have an
(almost) integer density in the Mott phase.

The Bose-Hubbard model in more than one dimension
(and most likely the polariton model as well) exhibits a
phase transition from a SF to a normal state (gapless with no
phase coherence), related to the well-known A transition in
liquid helium, at a temperature T [20,21]. This gives rise to
an intervening normal region in the phase diagram between
the MI (at small 7/ U) and the SF (at large ¢/ U) [56]. In the
1D case considered here, we have T,=0, so that for any T
# 0, only quasi-MI and normal states exist in the thermody-
namic limit. However, when the temperature is so low that
the SF correlation length in the thermodynamic limit far ex-
ceeds the system size L, results will be representative of the
SF state. Making use of finite-size and finite-temperature ef-
fects, a scaling analysis in fact yields accurate results for the
T=0 phase boundaries [53,57], Remarkably, interacting 1D
bosons can be realized using cold atomic gases (the Tonks-
Girardeau gas) [58,59] and are described by the Bose-
Hubbard model at low but finite temperatures [32].

Similar to Bose fluids, the low-energy excitations in the
SF phase are phonons. Within Bogoliubov theory [60], these
quasiparticles are described by a creation operator 1,b,t=ukb,t
+V,b_, and they have been observed experimentally in ultra-
cold atom systems [61]. As some of our results can be un-
derstood in terms of Bogoliubov theory, let us state some key
results for the Bose-Hubbard model. The coefficients of the
coherent superpositions of particle and hole excitations are
given by [62]

_ K(k) + n()U+ Wy,

2
u
= S

_ K(k) +7’l0U— Wy _

2
\")
wif= S

|uk|2_ 1’ (9)

with excitation energy

w, = VK(K)[2noU + K(K)],

K(k) = 4t sin®(k/2). (10)

Here, n is the condensate fraction, equal to ny=(u+1)/U in
the simple Bogoliubov approach at T=0 [23]. For small k
~(, we have a linear dispersion w;= *\2nytUk and both
|uy| and |v,| are nonzero. For large k= 1r, the energy disper-
sion is *(—ck?+2v4t>+2n,Ut) and thus free-particle-like. If
we assume 7> U, which is the parameter region where Bo-
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goliubov theory is valid, then |u,/>~1 and |v;|*~0 for k
>0, i.e., only one excitation branch is populated at large
momenta. This also holds true for the parameters studied
numerically in this work. We further compare to the higher-
order approximation proposed in Ref. [62]. For the Bose-
Hubbard model, the latter yields the same equations for |u,|*
[vi|*, and @y, but n is determined self-consistently, allowing
for depletion effects.

In the case of free bosons at 7=0, all particles condense
in the same k=0 state. However, finite temperature and/or
interactions cause a certain fraction of these particles to oc-
cupy states of higher energy. Indeed, both for U— 0 (nonin-
teracting bosons) and ny—0 (high-temperature limit), we
have |u>=1 and |v,|?=0. Moreover, with decreasing U or
ny, |V,|> approaches zero most quickly at large k since in this
case, K(k)> nyU so that w, = K(k), canceling the term —w; in
the expression for |v;|>. This will explain the temperature
evolution of the single-particle spectrum shown in Sec. I'V.

k)

A. Bose-Hubbard model

Despite the extensive literature on this model, there are
few nonperturbative results available for the spectra, as men-
tioned in Sec. I. Therefore, we investigate the single-boson
spectral function A(k,w) and the dynamic structure factor
S(k,w), with results shown in Figs. 2 and 4.

1. Single-particle spectrum

Menotti and Trivedi reviewed previous work on the
single-particle spectrum and presented results from a
random-phase approximation [23]. Their main findings are as
follows. For large #/ U, a weakly interacting SF exists and the
spectrum consists of the usual two gapless phonon modes
which exhaust the sum rule for A(k,w). Reducing ¢/ U, two
additional gapped modes appear at small k whose spectral
weight increases upon approaching the quantum phase tran-
sition. At the transition, one of the phonon modes evolves
into the particle or hole mode (depending on which of the
gaps E, ,, E, , is smaller), whereas one of the gapped modes
in the SF becomes a gapped mode in the MI. Menotti and
Trivedi [23] argued that the appearance of gapped modes and
the redistribution of spectral weight from coherent
phonon modes to incoherent gapped modes indicate the
strongly correlated nature of the SF state near the transition.
Let us point out that particle and hole dispersions in the
MI have been calculated by several authors before
[12,13,17-19,22,23,63-65], whereas the full spectral func-
tion of the MI (which also reveals the spectral weight and the
width of the excitations) was only shown in [18,23].

Our numerical results for the single-particle spectral func-
tion A(k, w) are shown in Fig. 2. The four different values of
the ratio t/U cover the range in which the generic MI-SF
transition takes place. According to Fig. 1(a), for the chosen
value of w/U=0.5, the transition occurs at t/U=0.14. In
each panel, we also report the total density n to three decimal
places, although our simulations provide much higher accu-
racy. The MI [(a) and (b)] exhibits the familiar gapped par-
ticle and hole bands [13]. The additional particles exhibit a
free-particle dispersion since the energy penalty for double
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FIG. 2. (Color online) Single-boson spectral function A(k, w) of the 1D Bose-Hubbard model, for different hoppings 7 (and total density
n), corresponding to (a) the MI phase, (b) just below the MI-SF transition, (c) just above the transition, and (d) the SF phase. Here, u/U
=0.5, L=64, and BU=3L. Here and in subsequent spectra, the symbols and error bars indicate the maxima of the peaks and the associated
errors obtained by the maximum entropy method. As discussed in Sec. IV A 2, features with very small spectral weight are difficult to
determine accurately. Solid red lines in (a) are mean-field results [63]. Solid lines in (c) and (d) are the Bogoliubov results, while dashed lines

are a fourth-order approximation (see text) [62].

occupation is the same at every site. In particular, we see in
Figs. 2(a) and 2(b) that the particle bandwidth is 87 (the
factor of 2 arising from the fact that particle hopping in-
volves a doubly occupied site), whereas the hole bandwidth
is 4¢. The Mott gap decreases with increasing ¢ and a sym-
metry of particle and hole bands emerges [1,20,24]. In addi-
tion to our QMC results, we plot the mean-field dispersion
[63] in Fig. 2(a). For larger t/U=0.13, mean-field theory
already predicts a superfluid, although the critical hopping in
1D is t.,/U=0.14.

In the SF phase [Figs. 2(c) and 2(d)], we obtain the ex-
pected Goldstone modes with linear dispersion at small k.
Additionally, we see two gapped signals which we relate to
the gapped modes discussed by other authors [17,19,23].
Whereas the negative-energy gapped mode is clearly visible
in Fig. 2(c) just above 7., the gapped modes have almost
disappeared in Fig. 2(d). Since we approach the phase tran-
sition above the lobe tip (u/U=0.5), the particle band be-
comes the gapless mode and carries more spectral weight,
while the gapped hole band evolves into a gapped mode in
the SF. This agrees well with the findings of Menotti and
Trivedi [23]. In accordance with Bogoliubov theory, the ex-
citations in the SF phase are free-particle-like for large k.
The bandwidths of the excitations both in the MI and the SF
phases scale roughly linearly with .

In Figs. 2(c) and 2(d), we also show results for the pho-
non dispersion * w; (without taking into account the weights
|ug], |v,|) from Bogoliubov theory as well as the higher-order

b}

approximation of Ref. [62]. Whereas the simple Bogoliubov
approach (neglecting depletion of the condensate) agrees
quite well with our data despite the rather small value of ¢/ U,
we do not find the higher-order approach to be systematically
better. In particular, at large k, the phonon bandwidth is no-
ticeably underestimated, which may be a result of an overes-
timate of depletion effects (these are most visible at large k).
The agreement with Bogoliubov theory at small £ coincides
with the findings of Menotti and Trivedi [23]. Rey et al. [62]
found the higher-order approximation to be consistent with
numerical results for other observables but do not show the
spectra seen in Fig. 2. Note that these authors consider larger
particle densities n=5 where the Bogoliubov-type approxi-
mations are more reliable. Finally, we tried to use our QMC
results for the superfluid fraction for n, in the expressions
obtained from Bogoliubov theory, but the results are worse
than for ny=n.

The spectral weight of the excitations decreases with in-
creasing k in all spectra of Fig. 2, although this is more
pronounced in the SF phase than in the MI. In Fig. 3, we
show the quasiparticle weights of the massless modes in the
SF phase, obtained by integrating over the quasiparticles
peaks in the spectra, and compare them to Bogoliubov theory
[Egs. (9) and (10)]. We verified that the QMC spectra satisfy
the sum rule. The spectral weight of the lower branch de-
creases more quickly, consistent with the Bogoliubov pic-
ture. However, Bogoliubov theory overestimates the quasi-
particle weights, especially at small k. Besides, there is a
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FIG. 3. (Color online) Quasiparticle weights u, and v, of the
gapless modes at #/U=0.2. The symbols are integrated intensities
from QMC and maximum entropy; the lines are the predictions
from Bogoliubov theory. Inset shows data at ¢/ U=0.14. Again, u
=0.5, L=64, and B=3L.

significant broadening of the peaks on approaching the zone
boundary. At strong coupling close to the phase transition
(inset of Fig. 3), the quasiparticle weight of the lower branch
decays much more quickly than Bogoliubov theory would
predict.

Sound velocity. The sound velocity v,= %b{_)o of the
phonon excitations in the SF phase was calculated for the
Bose-Hubbard model by Menotti and Trivedi using a
random-phase approximation [23]. They concluded that v,
vanishes at the generic transition, but remains nonzero when
crossing the multicritical point [19,23]. In their results, there
is a very sharp downturn of v toward zero close to .. We are
not aware of any calculations of v, for the polariton model.

From our QMC simulations, we can determine v, from
linear fits to the spectrum. Apart from the limited accuracy of
the maximum entropy inversion, this works quite well away
from ¢.. In agreement with Bogoliubov theory, we find for
the Bose-Hubbard model a linear dependence v, |t—1,| and
good agreement of results for L=32 and 64.

Determining the behavior of v, as t—¢, is more difficult
for two reasons. First, the phonon spectrum becomes nonlin-
ear due to finite-temperature effects (see discussion below),
rendering linear fits ill-defined. Second, the position of the
phase transition changes with system size, so that no reliable
finite-size scaling of v, can be carried out. The situation is
similar for the polariton model and we therefore do not show
results for v here, leaving this as an interesting issue for
future work.

2. Dynamic structure factor

The single-particle spectral function provides information
about the energy and lifetime of particles or holes added to
the interacting ground state. In contrast, the dynamic struc-
ture factor—corresponding to the imaginary part of the
dressed particle-hole propagator—yields insight into the den-
sity fluctuations in the ground state. In general, the two quan-
tities do not exhibit the same features. However, for broken
U(1) gauge symmetry in the SF phase, they are both domi-
nated by the same single-particle excitations (phonons) [26].
We find this statement to hold in 1D even though no sym-
metry breaking occurs.

PHYSICAL REVIEW A 80, 033612 (2009)

The density operator in the Bose-Hubbard model is pz
=S,e"* ;. For k=0, we have pj=3i, and S(k,w) has a
trivial contribution at w=0 which we dismiss by considering
pr=2,e"™(i,~ (). The above-mentioned relation to
particle-hole excitations becomes evident by rewriting the
density operator as pZ=EqbZ wibg-

We show results for S(k,w) in Fig. 4. According to Huber
et al. [19], S(k,w) in the MI phase should exhibit a con-
tinuum of particle-hole excitations, starting at w=E, due to
the Mott gap in the single-particle spectrum (see Fig. 2). For
the parameters in Fig. 4(a), E,/ U~0.7. The dispersion of the
particle and hole bands is very weak. Note that we find no
agreement with the two single-particle excitations E’g’ +€,(k),
E,+ €,(k) discussed by Huber er al. This may be a result of
their mean-field treatment of the two-dimensional case. Our
results do agree qualitatively with exact numerical results on
small clusters [15].

For larger ¢/ U, the Mott state contains nontrivial density
fluctuations and the upper band in S(k,w) acquires some k
dependence. The energy of the excitations in S(k, w) (follow-
ing 2 {e,(q)+€,(k=q)}) [19] generally increases with in-
creasing k. This is obvious from the momentum dependence
of the particle and hole bands in A(k, ) and also agrees with
the expectation that long-wavelength density fluctuations in a
Mott state require less energy than fluctuations with short
periods in real space.

For t=t. in Fig. 4(b), we find a low-energy mode with
nonlinear dispersion, which we interpret as a precursor of the
linear excitations of the SF phase [see panel (d)]. Even for
t=1, [Fig. 4(c)], the gapless low-energy mode in our numeri-
cal results is not linear. A linear spectrum is a result of the
condensation of bosons in the SF phase, but is not expected
in the normal phase. Since our simulations are done at finite
temperature and because the phase coherence length is small
close to t., we can understand the absence of a clear, linear
signature in Fig. 4(c). Going to larger f,, we indeed see linear
excitations near k=0 [Fig. 4(d)]. Similar effects are expected
for the single-particle excitations, but are difficult to see on
the scale of Fig. 2. Coming back to Fig. 4(c), away from k
=0, we find a free-particle-like contribution, similar to the
case of the MI. This excitation carries negligible spectral
weight near k=0.

Apart from finite-temperature effects, these features are
qualitatively similar to the excitations discussed by Huber e?
al. [19], namely, a gapless sound mode (related to phase and
density modulations) dominant at small k and a massive
mode (corresponding to exchange between condensate and
noncondensate at fixed density) acquiring spectral weight at
k>0. Additionally, we see in Fig. 4(c) the (weak) signature
of a gapped mode at small k, the nature of which we cannot
determine from our present simulations. For ¢/ U=0.2 [Fig.
4(d)], the excitation “band” in S(k,w) follows closely the
Bogoliubov mode, in accordance with the discussion at the
beginning of this section.

At this point, a comment concerning the accuracy of the
spectra obtained from the maximum entropy inversion is in
order. The spectral weight of the features visible in density
plots such as Fig. 4(d) varies over orders of magnitude.
Some very weak signals, such as the group of points located
at around k=/2 below the main excitation band (with a
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(d)

FIG. 4. (Color online) Dynamic structure factor S(k,w) of the Bose-Hubbard model for the same parameters as in Fig. 2. Panel (d)

includes the same analytical approximations as Fig. 2(d).

weight that is a factor 10 000 smaller than that of the domi-
nant features), are expected to be artifacts. We shall see be-
low that in the polariton model, there actually exist real ex-
citations with very small spectral weight which are easy to
miss in the maximum entropy inversion. To reliably study
such excitations, analytical approaches (if available) are
clearly superior [25].

Our findings for the dynamic structure factor are consis-
tent with previous numerical results on small systems
(L=10,20) [15,16]. We can confirm the broadening of the
excitations with increasing k in the SF phase [16], related to
two-particle continua [19]. However, the maximum entropy
method is not capable of resolving fine structures as (generi-
cally) seen in exact diagonalization results for small clusters

[15].

B. Polariton model

For the polariton model, the only published results on
dynamic properties are for the single-particle spectrum of the
MI phase at zero temperature [24,25]. As pointed out before,
the nature of the conserved particles in the polariton model is
determined by the detuning. We start by discussing the case
A=0 for which the polaritonic character of the excitations is
most pronounced. This can readily be seen from Eq. (8),
where |n,,|) and |n,—1,7) contribute with equal weight.

1. Single-particle spectrum

In Fig. 5, we show our QMC results for the single-photon
spectral function. As for the Bose-Hubbard model, the values

of the ratio /g range from deep in the Mott phase across the
generic transition well into the SF phase. According to a
finite-size scaling analysis for u/g=0.4, the phase transition
occurs at 7,/g=0.0626(1) (see Fig. 14), in agreement with
Fig. 1(b). Hence panels (a) and (b) are for the MI regime,
whereas (c) and (d) are for the SF phase.

The results in the MI shown in Figs. 5(a) and 5(b) agree
well with previous numerical work [24]. Similar to the Bose-
Hubbard model, there exist particle and hole bands, sepa-
rated by the Mott gap. It is important to stress that although
we add bare photons to the system, the particle and hole
excitations reflect the properties of the polaritons in the sys-
tem. Whereas the ratio of particle and hole bandwidths is two
to one in the Bose-Hubbard model, it depends on the char-
acter of the quasiparticles (polaritons) in the polariton model
and varies with detuning [24]. With increasing #/g, the gap
closes and the bandwidths of excitations increase (effective
masses decrease).

Recent analytical work revealed the existence of so-called
upper polariton modes at higher energies, which represent an
important difference between the Bose-Hubbard model and
the polariton model [25]. For the Mott lobe with n,=1, only
one such (particle) band exists, corresponding (for small
enough t/g) to a transition between the ground state |n
=1,-) and the state |np:2,+> [see Eq. (8)]. The weight of
this high-energy excitation is very small compared to the
dominant particle and hole modes discussed above (0.04 as
compared to 1.46 for the k=0 atomic-limit results in [25]);
with increasing ¢/g, the weight difference becomes even
larger [25]. The energy splitting between the — and +
branches of eigenstates increases further for detuning A #0
(Fig. 2 in [7]).
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FIG. 5. (Color online) Single-photon spectral function AP"(k,w) of the 1D polariton model at w/g=0.4 for different hoppings t,
corresponding to (a) deep in the MI, (b) just below the MI-SF transition, (c) just above the transition, and (d) in the SF phase. Here, Bg
=3L and L=64. With increasing ¢, the density plots are more and more “overexposed” to see less dominant features.

The upper polariton mode is not visible in Fig. 5(a) and
5(b). Excitations with small spectral weight are notoriously
difficult to see using QMC in combination with maximum
entropy. In the present case, this is aggravated by the fact
that the resolution of maximum entropy decreases at high
energy. Nevertheless, we see a signature of the upper polar-
iton band in Fig. 6 and the latter is also present (but not
shown) in the high-temperature data of Fig. 12(a); high-
energy features are easier to resolve in QMC and maximum
entropy at higher temperatures. From the eigenvalues of the
states (8), we can determine the excitation energy of the
upper mode in the atomic limit as w) * g=—(u—wy)/ g+(\2
+1) =3 for the parameters of Fig. 6, in reasonable agreement
with our results in Fig. 6(a) given the ill-conditioned nature
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FIG. 6. (Color online) Single-photon spectral function in the Mott phase for the same parameters as in Fig.

excitations at higher energies.

of the problem under consideration. Note that the upper po-
lariton mode can be seen even close to the phase transition in
Fig. 6(b). The weight of the upper mode in Fig. 6 is about a
factor of 100 smaller than that of the conventional particle
and hole excitations. Although the upper polariton mode ex-
ists also in other results for the single-particle spectrum in
the Mott phase (Figs. 8, 12, and 13), we focus on the low-
energy conventional modes with large spectral weight. The
latter can be determined accurately from our simulations and
will be the dominant feature in experiments.

Figures 5(c) and 5(d) contain spectra of the polariton
model in the SF phase. There is a clear signature of the
gapless phonon modes starting at k=w=0, with linear disper-
sion at small k. In the SF phase but close to the transition, we
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FIG. 7. (Color online) Quasiparticle weights u, and v, of the
gapless modes of the polariton model, similar to Fig. 3.

see an additional gapped mode at w<<0 [Fig. 5(c)]. Our
results at these and at further couplings /g (and 1/ U) suggest
that these gapped modes disappear more quickly with
increasing t/g than for the Bose-Hubbard model, which can
be explained in terms of the photonic SF expected for
the present parameters (see below) [29]. Note that a simple
Bogoliubov-type theory for the polariton model does not
exist due to the composite nature of polariton excitations.

Figure 7 shows the quasiparticle weights. The general
shapes resemble the Bose-Hubbard model case (Fig. 3), but
the lower branch decays very quickly in the polariton model
even at ¢/g=0.15 quite far from the phase transition. This
may be attributed to the fact that the energy cost for particle
and hole excitations is different due to the dependence of
Uege on n,,. Again, most of the spectral weight in the SF phase
is found at small k.

Fixed density. In Fig. 8, we show the single-photon spec-
trum across the fixed-density transition (n,=1), obtained by
selecting configurations only at that density. In Ref. [40], the
critical hopping was determined as 7./g=0.198 [cf. Fig.
1(b)]. The spectra in both the MI and the SF look very simi-
lar to those across the generic transition shown above. This
may be different very close to the multicritical point, but this
regime is most demanding numerically if the results are to be
used in a maximum entropy inversion.

From the spectra obtained at constant density in the MI,
we can estimate the effective particle and hole masses by
fitting a quadratic dispersion to the bands in the vicinity of
k=0. In the Bose-Hubbard model, there is an emergent

ool APME, w) g
| t/g=0.12

n, =1 ==

(a) k

PHYSICAL REVIEW A 80, 033612 (2009)

FIG. 9. (Color online) Effective particle (m*) and hole masses
(m™) along the line n,=1, as obtained from fits to the bands in
APM(k, ) near k=0.

particle-hole symmetry on approaching the lobe tip [1,20]
and similar behavior is suggested by the evolution of the
particle and hole bands with increasing ¢/ g also in the polar-
iton model. For fixed polariton density, the two masses ap-
proach each other and vanish at the phase transition. This has
been demonstrated in two dimensions (2D) based on a
strong-coupling approach [25]. In the region not too close to
the phase transition, where stable fits can be obtained, Fig. 9
confirms this observation also in 1D.

2. Dynamic structure factor

The evolution of the polariton dynamic structure factor
S(k,w) across the MI-SF transition is shown in Fig. 10. Re-
markably, the results look very similar to those for the Bose-
Hubbard model. Close to the atomic limit [/g=0.01 in Fig.
10(a)], we see a gapped, almost flat feature with energy
~(.6g. A look at the corresponding single-particle spectrum
in Fig. 8(a) reveals that this value is identical to the Mott
gap. The almost flat particle and hole bands cause a very
weak dispersion also for the particle-hole excitations visible
in S(k,w). It is useful to remember that it is the effective
polariton-polariton repulsion mediated by the atom-photon
coupling that determines the Mott gap. For a single site and
n,=1 (i.e., for the case of adding a second polariton),

Uetr(1) = 2\g” + (A/2)? = \2¢7 + (A/2)> = A/2.
For zero detuning (A=0), U.g(1)/g=2—-2~0.59.

(11)
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FIG. 8. (Color online) Single-photon spectrum AP'(k, ) of the polariton model along the line n,=1 crossing the Kosterlitz-Thouless

transition. Here, L=64 and Bg=3L.
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FIG. 10. (Color online) Polariton dynamic structure factor S(k,w) for the same parameters as in Fig. 5. Insets show an extrapolation of

the Mott gap at small k to L— .

As for the Bose-Hubbard model, the excitations in S(k, ®)
acquire a noticeable dispersion with increasing /g and the
k=0 gap closes. Figures 10(b) and 10(c) are both close to the
phase transition. An inspection of the k=0 region shows a
weak linear mode with very small slope O(0.01), corre-
sponding to the small superfluid density existing in both L
=64 systems. The massive mode extends to k=0 with a tiny
intensity (thus not visible in the figure). An extrapolation of
the gap to L= (insets) shows that it scales to zero in Fig.
10(c), but stays finite at the smaller hopping in Fig. 10(b).
Indeed, a finite-size scaling of the superfluid density (dis-
cussed later) implies that Fig. 10(b) is just below the phase
transition. In addition to finite-size effects, we again observe
finite-temperature effects in the form of deviations from the
expected linear spectrum close to 7, (see discussion for the
Bose-Hubbard model). For even larger #/g, the spectrum ex-
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hibits a single linear mode at small k. Similar to the spectral
function, gapped modes seem to be suppressed quickly in the
SF phase.

Clearly, the polariton dynamic structure factor S(k,w)
represents a useful probe to distinguish between the MI and
the SF phases. We have argued before that the polariton MI
has fluctuations in the photon and exciton density, whereas
the polariton density is pinned.

We now demonstrate that the exciton (atom) and photon
structure factors, $(k, ) and SP"(k, w), shown in Fig. 11, do
not reflect this fact and therefore cannot be used to charac-
terize the nature of the Mott state. To this end, it is important
to notice that the Jaynes-Cummings Hamiltonian has two
branches of eigenstates |n,,,+> and |n,,—) [the latter contain-
ing the ground state, see also Eq. (8)] with the same polariton
number but different energy [37]. In the atomic limit, the

25F 1

2.0 = -

z:%  T13; T3s5555;8 5T23T33; Triag

S Lor =

~
310* 7
Sk, w)

0.5 t/g=0.01 -

1 1 1

0.00 T
(b) k

FIG. 11. (Color online) Dynamic structure factor for excitons (S*) and photons (SP") for the same parameters as Fig. 10(a).
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dynamic structure factor for photons and excitons [Eq. (5)] is
dominated by the contributions (n,,— ;3,1|n,,,—) (with w=0)
and (n,,,+ f)unp,—) (with energy w=2\ng>+A?/4, equal to 2
in Fig. 11). Any additional peaks at finite #/g have much
smaller spectral weight and cannot be accurately resolved by
our method. However, since the matrix elements of exciton
and photon density operators for the combination
(n,,+ f)Z|np,—> have the same modulus but opposite sign, the
dominant contributions to S*(k,w) and SP"(k,w) cancel in
the case of the polariton structure factor S(k,w). The disper-
sionless excitations near w/g=2 seen in Fig. 11 are therefore
absent in S(k, ), as confirmed by our data. Hence, while the
upper polariton modes in the single-particle spectrum have
small but finite weight, here their contribution is zero. Con-
sequently, the polariton dynamic structure factor closely re-
sembles S(k,w) of the Bose-Hubbard model.

3. Temperature effects

Experimental realizations of Bose-Hubbard models using
cold atomic gases are usually prepared very close to zero
temperature (nK range). In contrast, due to the strong matter-
light coupling achievable in cavities, realizations of polariton
models offer a chance of operation at significantly higher
temperatures. The critical temperature at which the MI state
starts to lose its characteristic integer density has been esti-
mated for the polariton model as 7%/g=~0.03 [24,38]. For
feasible values of the coupling g, 7" falls into the mK range.
Generally, Mott-like physics is expected as long as the Mott
gap is significantly larger than the thermal energy (and the
number of particle-hole excitations is small). The finite-
temperature physics of the Bose-Hubbard model has been
analyzed by several groups [56,64,66,67]. Here we consider
the effect of low but finite temperatures on the excitation
spectra of the polariton model. This also provides informa-
tion about the sensitivity of the results to the (necessarily
finite) value of B used in our simulations.

The present method permits calculation of spectra also
outside the MI, i.e., in the SF and the normal phases. We
have pointed out above that, strictly speaking, there is no SF
phase at T# 0 in 1D. Nevertheless, SF-like properties can be
seen for T sufficiently small. The results in Fig. 12 underline
the discussion of finite-temperature effects on the dispersion
in the SF near k=0. The particle excitation is obviously not
linear in panels (b) and (d), for which the temperature is
higher than in Fig. 5.

Results for AP'(k,w) are shown in Fig. 12. At finite but
low temperature [Figs. 12(c) and 12(d)], they still closely
resemble the results at 7~ 0 in Figs. 5(a) and 5(d). At high
temperature [Figs. 12(a) and 12(b)], we observe strong
broadening of the particle band at all k and strongly sup-
pressed spectral weight for hole excitations. Existing work
for the Bose-Hubbard model finds that at finite temperature,
additional multiparticle and hole bands arise [66]. We see an
additional excitation for Sg=4.4 and ¢#/g=0.01 at an energy
of w/g~3.1. The weight of that excitation is about 50 times
smaller than the weight of the main peak with energy w/g
~0.2 and thus not shown in Fig. 12(a). This excitation is
consistent with the upper polariton mode discussed above.

PHYSICAL REVIEW A 80, 033612 (2009)

We note that a broadened “gapped” spectrum is compat-
ible with a density that deviates from the integer value char-
acteristic of the MI and this has to be kept in mind for po-
tential applications relying on integer density. The numerical
results for the total density are shown in each of the panels,
demonstrating that despite the large particle-hole gap, the
polariton density deviates significantly from the low-
temperature value n,=1 for the parameters of Fig. 12(a).

Some of the features observed in the SF phase can be
explained by means of Bogoliubov theory for the Bose-
Hubbard model. In particular, we have discussed above that
with increasing temperature (where the condensate fraction
ny—0), the spectral weight of the negative-energy branch
vanishes first at large k, in agreement with our numerical
results. In addition, the broadened positive-energy branch no
longer has a clear linear behavior at small k.

We would like to point out that not only finite temperature
but also disorder is an inevitable feature of experimental re-
alizations of coupled-cavity systems. Although not studied
here directly, it has been stated [38] that the effect of disorder
(in the form of local variations of the parameters w,, g, and
t) has similar consequences as finite temperature.

4. Detuning

The detuning between the cavity photon mode and the
atomic level splitting is an important parameter in the polar-
iton model which is absent in the Bose-Hubbard model. Its
influence on the physics has been discussed before
[24,27,53]. Detuning can also be easily changed experimen-
tally, motivating a calculation of the excitation spectra for
A #0. Our results are shown in Fig. 13.

The extent of the different phases, namely, excitonic or
polaritonic MI and photonic or polaritonic SF in the phase
diagram, has been analyzed for a two-site system [27]. The
way to distinguish between the polaritonic SF and the pho-
tonic SF is to monitor fluctuations in the exciton occupation
number (pinned in the photonic SF but fluctuating in the
polaritonic SF). The conclusion has been that for r=|A|, a
polaritonic SF exists only for A/g<—1. This would match
with the conjectured photonic nature of the SF near the lobe
tip in two dimensions [53]. However, it is not clear if these
strict values also hold for larger systems and the thermody-
namic limit. Besides, the work by Irish et al. [27] is exclu-
sively concerned with the fixed-density transition occurring
at t=|A|, whereas a polariton SF may exist also for <|A| if
density fluctuations are allowed (generic transition). The
spectrum in Fig. 13(b) is for such a set of parameters.

Again pertaining to the fixed-density case, the MI state is
supposed to be of excitonic nature for A/g<-1, <|A| and
of polaritonic nature for |A|/g<1 and small enough /g,
respectively, ¢/|A| [27]. The former case is depicted in Fig.
13(a), whereas the latter corresponds to the A=0 results re-
ported in Fig. 5.

For A> g, photon excitations are always lower in energy
and the effective interaction approaches zero. As a result, MI
regions are very small or nonexistent and the photonic SF
state is similar to that of the Bose-Hubbard model in the limit
of large 1/ U [24].
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phase (right). Here again L=64. Corresponding results at Bg=192 can be found in Figs. 5(a) and 5(d).

Here, we consider A/g= %2 for comparison to previous
calculations of the spectra in the Mott phase [24]. (Note that
the rotating wave approximation formally requires |A|<<e,
w, [68].) These correspond to effective repulsions U.g/g
=0.096 (for A/g=2), respectively, U./g=2.096 (for A/g
=-2), in excellent agreement with the width of the n,=1
Mott lobes for the same parameters [24].

Our results in Fig. 13 show that again the spectra are
dominated by the generic features of the MI and the SF.
However, the detuning in the present case changes the ratio
of the bandwidths of particle and hole bands W,/ W, in the
Mott state [24]. While for A=0, W,/W,=~3, we find
W,/W,~2 (similar to the result for the Bose-Hubbard
model) for A/g=2 and W,/W,~7 for A/g=-2. The inco-
herent features observed for A/g=-2 in Ref. [24] are not
seen here. As mentioned before, the energy of the upper po-
lariton modes (not shown) increases for A # 0 [7].

In the SF, we find the expected gapless excitations, as
well as gapped modes indicative of a correlated superfluid.
Since for A/g=2, U,y is very small, the Mott gap of the
dispersive bands in Fig. 13(c) is also small (0.057g), but it is
still larger than the temperature scale in our simulation 7/g
=0.005. We note that, within our resolution, the positive-
energy spectrum in Fig. 13(d) looks gapless, but not clearly
linear. In this respect, the spectra for finite detuning resemble
those obtained at high temperatures. Apart from this issue
and a scaling of energies (due to the dependence of Uy on
A), the spectra obtained for A/g=-2 are very similar to
those for A=0, whereas those for A/g=2 resemble closely
the results for the Bose-Hubbard model.

5. Phase transition

To end with, we present a scaling analysis for the generic
phase transition. As pointed out by Fisher er al. [1], the scal-
ing relation

Py = LZ—d—zi;(aLl/V”B/LZ) (12)
should hold for the superfluid density across the MI-SF tran-
sition. Here v is the critical exponent of the correlation
length which is expected to diverge like £~ 67" and z is the
dynamical critical exponent. The generic transition in the
Bose-Hubbard model has mean-field exponents z=2 and v
=1/z=1/2[1,21,57,69]. Recent field-theory [10] and strong-
coupling results [25] predict the same universality classes for
the polariton model, in conflict with numerical results in two
dimensions which suggest the absence of multicritical points
[53]. We test in 1D the scaling hypothesis Eq. (12) with z
=2 and the hyperscaling relation z=1/v, along the line
u/g=0.4 where the generic transition is expected [see Fig.
1(b)].

To this end, we keep the temperature constant at S
=L2/10 and plot p, L% over (t—t,)L"" to obtain the uni-
versal function p (Fig. 14). Defining a cost function in the
spirit of Ref. [70], allows us to evaluate the quality of the
finite-size-scaling plot quantitatively.

We find the minimum of our cost function at ¢,
=0.0626(1) and »=0.50(2) when matching p close to the
phase transition [|(t—#,)L""|<1 in Fig. 14]. We note that
with the system sizes available, this result is not very stable.
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FIG. 13. (Color online) Single-photon spectra with detuning A= e—wj for the [(a) and (b)] excitonic case A/g=-2, u/g=-0.5 and [(c)
and (d)] photonic case A/g=2, u/g=0.64 in [(a) and (b)] the MI and [(c) and (d)] in the SF. Here, L=64 and Bg=3L.

A fit in a larger region of |(t—t,)L""| provides a better data
collapse overall (but worse close to the phase transition),
with »=0.65 and very slightly smaller #,.

A similar scaling with z=1 did not succeed, so that we
conclude that the universality class of the generic transition
in the polariton model is the same as that in the Bose-
Hubbard model despite the composite nature of the quasipar-
ticles. This is consistent with recent field-theory and strong-
coupling results [10,25].

An accurate scaling analysis for the fixed-density transi-
tion through the lobe tip has been found to require much
larger system sizes and is therefore not shown. In the 1D
case considered, the shape of the lowest Mott lobe in 1D (see
Fig. 1) suggests that the similarity to the Bose-Hubbard
model holds also in this respect, i.e., a Kosterlitz-Thouless-
type phase transition.

V. CONCLUSIONS

We calculated the single-boson spectral function and the
dynamic structure factor of the Bose-Hubbard model and for
a recently proposed model of itinerant polaritons in coupled-
cavity arrays. These models undergo a quantum phase tran-
sition from a Mott insulator to a superfluid state upon in-
creasing the hopping integral of the bosons, respectively,
photons with respect to the interaction. Results in one dimen-
sion, within and close to the Mott lobe with density one,
have been obtained.

Despite the generally different nature of the conserved
particles, the models exhibit very similar spectral properties,
including gapped particle and hole bands in the Mott insu-

lating phase and Bogoliubov-type excitations in the super-
fluid phase. Additional excitations related to the second
branch of upper polariton states exist in the single-particle
spectrum of the polariton model [25], but cancel out in the
dynamic structure factor. In general, these features have high
energy and very small spectral weight, so that for practical
purposes the excitation spectra are qualitatively similar to the
Bose-Hubbard model.

Correlation effects are particularly strong in the one-
dimensional case considered. Our numerical results represent
unbiased nonperturbative spectra in both the Mott and super-
fluid phases. Good qualitative agreement with recent analyti-
cal work on the two-dimensional Bose-Hubbard model was
found and we have compared our results in the superfluid
phase to Bogoliubov theory. The limiting cases of the Mott
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FIG. 14. (Color online) Finite-size scaling for the generic tran-
sition in the polariton model at u/g=0.4, testing the scaling hypoth-
esis Eq. (12).
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insulator close to the atomic limit, as well as the weakly
interacting superfluid are described quite well by analytical
approximations, whereas in the phase transition region, our
nonperturbative results show considerable deviation. Emerg-
ing particle-hole symmetry on approach of the multicritical
lobe tip has been demonstrated for the polariton model.

For the polariton model, we have also explored the influ-
ence of detuning and finite temperature on the spectral prop-
erties and have presented a scaling analysis to determine the
universality class of the generic phase transition. Keeping in
mind experimental realizations of coupled-cavity arrays, in-
teresting open issues for future work include the excitation
spectra in the two-dimensional case (and comparison to ana-
lytical results [25]), the behavior of the sound velocity across
the phase transition (also for the Bose-Hubbard model), and
disorder.

PHYSICAL REVIEW A 80, 033612 (2009)

The present work further highlights the fact that the phys-
ics of strongly correlated bosons as described by the Bose-
Hubbard model may be observed in terms of optical models
that, if realized, would have some distinct experimental
advantages and further contain new degrees of freedom due
to the mixed nature of the quasiparticles.

ACKNOWLEDGMENTS

M.H. was supported by the FWF Schrédinger Grant No.
J2583. P.P. acknowledges support from the FWF Projects
No. P18551 and No. P18505. We made use of the ALPS
library [44,45] and the ALPS applications [46]. We acknowl-
edge fruitful discussions with F. Assaad, M. J. Bhaseen, J.
Keeling, D. Khmelnitskii, and P. B. Littlewood. We are
grateful to H. Monien and D. Rossini for providing us with
data for Fig. 1.

[1] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Phys. Rev. B 40, 546 (1989).
[2] M. Greiner, O. Mandel, T. Esslinger, T. W. Hinsch, and L
Bloch, Nature (London) 415, 39 (2002).
[3] K. M. Birnbaum et al., Nature (London) 436, 87 (2005).
[4] F. Brennecke et al., Nature (London) 450, 268 (2007).
[5] J. M. Fink et al., Nature (London) 454, 315 (2008).
[6] M. J. Bhaseen, M. Hohenadler, A. O. Silver, and B. D. Si-
mons, Phys. Rev. Lett. 102, 135301 (2009).
[7] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg,
Nat. Phys. 2, 856 (2006).
[8] M. J. Hartmann, F. G. S. L. Branddo, and M. B. Plenio, Nat.
Phys. 2, 849 (2006).
[9] M. Hartmann, F. Brandao, and M. Plenio, Laser Photonics
Rev. 2, 527 (2008).
[10]J. Koch and K. Le Hur, Phys. Rev. A 80, 023811 (2009).
[11] W. Zwerger, J. Opt. B: Quantum Semiclassical Opt. 5, S9
(2003).
[12] K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ra-
makrishnan, Europhys. Lett. 22, 257 (1993).
[13] N. Elstner and H. Monien, Phys. Rev. B 59, 12184 (1999).
[14] T. D. Kiihner, S. R. White, and H. Monien, Phys. Rev. B 61,
12474 (2000).
[15] R. Roth and K. Burnett, J. Phys. B 37, 3893 (2004).
[16] G. G. Batrouni, F. F. Assaad, R. T. Scalettar, and P. J. H.
Denteneer, Phys. Rev. A 72, 031601(R) (2005).
[17] K. Sengupta and N. Dupuis, Phys. Rev. A 71, 033629 (2005).
[18] W. Koller and N. Dupuis, J. Phys.: Condens. Matter 18, 9525
(2006).
[19] S. D. Huber, E. Altman, H. P. Biichler, and G. Blatter, Phys.
Rev. B 75, 085106 (2007).
[20] B. Capogrosso-Sansone, S. G. Sdyler, N. Prokof’ev, and B.
Svistunov, Phys. Rev. A 77, 015602 (2008).
[21] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. B 75, 134302 (2007).
[22] M. Ohliger and A. Pelster, e-print arXiv:0810.4399.
[23] C. Menotti and N. Trivedi, Phys. Rev. B 77, 235120 (2008).
[24] M. Aichhorn, M. Hohenadler, C. Tahan, and P. B. Littlewood,

Phys. Rev. Lett. 100, 216401 (2008).

[25] S. Schmidt and G. Blatter, Phys. Rev. Lett. 103, 086403
(2009).

[26] A. Griffin, Excitations in a Bose-Condensed Liquid (Cam-
bridge University Press, London, 1993).

[27] E. K. Irish, C. D. Ogden, and M. S. Kim, Phys. Rev. A 77,
033801 (2008).

[28] S. C. Lei and R. K. Lee, Phys. Rev. A 77, 033827 (2008).

[29] E. K. Irish, e-print arXiv:0903.3380.

[30] J. Cho, D. G. Angelakis, and S. Bose, Phys. Rev. Lett. 101,
246809 (2008).

[31]J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).

[32] L. Pollet, S. M. A. Rombouts, and P. J. H. Denteneer, Phys.
Rev. Lett. 93, 210401 (2004).

[33] O. F. Syljudsen and A. W. Sandvik, Phys. Rev. E 66, 046701
(2002).

[34] H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998).

[35] D. G. Angelakis, M. F. Santos, and S. Bose, Phys. Rev. A 76,
031805(R) (2007).

[36] M. J. Hartmann and M. B. Plenio, Phys. Rev. Lett. 100,
070602 (2008).

[37] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

[38] M. L. Makin, J. H. Cole, C. Tahan, L. C. L. Hollenberg, and A.
D. Greentree, Phys. Rev. A 77, 053819 (2008).

[39] D. Rossini and R. Fazio, Phys. Rev. Lett. 99, 186401 (2007).

[40] D. Rossini, R. Fazio, and G. Santoro, EPL 83, 47011 (2008).

[41] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. L. Schuster, J.
Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoe-
Ikopf, Phys. Rev. A 76, 042319 (2007).

[42] H. G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70, 875
(1993).

[43] H. G. Evertz, Adv. Phys. 52, 1 (2003).

[44] A. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187
(2007).

[45] M. Troyer, B. Ammon, and E. Heeb, Lect. Notes Comput. Sci.
1505, 502 (1998).

[46] F. Alet, S. Wessel, and M. Troyer, Phys. Rev. E 71, 036706
(2005).

033612-15



PIPPAN, EVERTZ, AND HOHENADLER

[47] A. W. Sandvik and J. Kurkijdrvi, Phys. Rev. B 43, 5950
(1991).

[48] A. Dorneich and M. Troyer, Phys. Rev. E 64, 066701 (2001).

[49] A. W. Sandvik, R. R. P. Singh, and D. K. Campbell, Phys. Rev.
B 56, 14510 (1997).

[50] F. Michel and H. G. Evertz, e-print arXiv:0705.0799.

[S1]TE. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343
(1987).

[52] N. V. Prokof ’ev and B. V. Svistunov, Phys. Rev. B 61, 11282
(2000).

[53]7J. Zhao, A. W. Sandvik, and K. Ueda, e-print arXiv:0806.3603.

[54]J. K. Freericks and H. Monien, Europhys. Lett. 26, 545
(1994).

[55] T. D. Kiihner and H. Monien, Phys. Rev. B 58, R14741
(1998).

[56] F. Gerbier, Phys. Rev. Lett. 99, 120405 (2007).

[57] F. Alet and E. S. Sorensen, Phys. Rev. B 70, 024513 (2004).

[58] B. Paredes et al., Nature (London) 429, 277 (2004).

[59] N. Fabbri, D. Clement, L. Fallani, C. Fort, M. Modugno, K. M.
R. van der Stam, and M. Inguscio, Phys. Rev. A 79, 043623

PHYSICAL REVIEW A 80, 033612 (2009)

(2009).

[60] N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).

[61]J. M. Vogels, K. Xu, C. Raman, J. R. Abo-Shaeer, and W.
Ketterle, Phys. Rev. Lett. 88, 060402 (2002).

[62] A. M. Rey et al., J. Phys. B 36, 825 (2003).

[63] D. van Oosten, P. van der Straten, and H. T. C. Stoof, Phys.
Rev. A 63, 053601 (2001).

[64] X. Lu, J. Li, and Y. Yu, Phys. Rev. A 73, 043607 (2006).

[65] A. B. Bhattacherjee, J. Phys. B 40, 143 (2007).

[66] D. B. M. Dickerscheid, D. van Oosten, P. J. H. Denteneer, and
H. T. C. Stoof, Phys. Rev. A 68, 043623 (2003).

[67] L. 1. Plimak, M. K. Olsen, and M. Fleischhauer, Phys. Rev. A
70, 013611 (2004).

[68] N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly,
Phys. Rev. A 23, 236 (1981).

[69] G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev.
Lett. 65, 1765 (1990).

[70] K. Harada and N. Kawashima, J. Phys. Soc. Jpn. 67, 2768
(1998).

033612-16



