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The Gutzwiller approximate solution to the Gutzwiller wavefunction yields exact results for the Gutzwiller
wavefunction in the infinite-dimensional limit. Implicit in the Gutzwiller approximation is an approximate
local form of the fermion exchange hole. This approximate form is the same for all dimensions but is incorrect
except in infinite dimensions. We implement the correct form for the exchange hole into the Gutzwiller
approximation. We perform calculations on the one-dimensional Hubbard model at half-filling. They indicate
that the implementation of the exchange hole already brings the Gutzwiller approximation into very close
quantitative agreement with the results of the full Gutzwiller wavefunction. Metallicity as well as antiferro-
magnetism are recovered.
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I. INTRODUCTION

The Hubbard model1–4 and its descendants have contrib-
uted greatly to our understanding of strongly correlated
systems5–7 and in particular of the metal-insulator transition
�MIT�5 exhibited by them. Early attempts4,8 to explain the
MIT were based on the use of a projected wavefunction due
to Gutzwiller �GWF�. The GWF is a variational method
whose starting point is a noninteracting wavefunction, in
which double occupations and consequently charge fluctua-
tions are suppressed.

Exact solutions to the GWF are known in one9,10 and
infinite dimensions.10–12 In one dimension the exact solution
of GWF is metallic, a conclusion which was shown13 to be
general for finite dimensions. The exact solution to the Hub-
bard model at half-filling in one dimension14 is insulating for
all finite values of the interaction strength. Extended versions
of the GWF with charge fluctuations can only account for
insulating behavior when correlations between doubly occu-
pied sites and empty sites are incorporated �bound
excitons�.15–17

The GWF is often treated via an approximation also due
to Gutzwiller4,7,8,18 �GA�. The GA predicts a MIT �Refs. 8
and 19� between a paramagnetic metal and a paramagnetic
insulator �Brinkman-Rice transition� at half-filling, in contra-
diction with the exact Gutzwiller solution. The GA also does
not account for antiferromagnetic correlations properly
whereas exact diagonalizations have shown that the GWF, in
spite of being based only on projecting out double occupa-
tions, reproduces antiferromagnetic correlations remarkably
well.20 On the other hand the GA corresponds to the exact
solution of the GWF when the number of dimensions is
infinite.10–12,21 An improved GA has previously been con-
structed by Metzner22 where it is shown that self-energy cor-
rections can restore metallicity. Another important study rel-
evant here is that of van Dongen et al.23 in which it is shown
that metallicity can be recovered based on dimensional scal-
ing arguments, however finite orders of perturbation theory
are not sufficient to remove the Brinkman-Rice MIT. In two
dimensions metallicity can be recovered24,25 via a diagram-
matic summation method in which the error terms are esti-
mated with high accuracy.26 This has also been demonstrated
numerically.27

Interestingly, the exchange hole �pair-correlation function
of particles with parallel spins, defined as g�rij�= �ninj� where
the average is over the Fermi sea� for noninteracting elec-
trons at half-filling applied in GA is independent of the
physical dimension. It corresponds to the exact GWF result
only in infinite dimensions �see Fig. 1�. The crucial point
here is that in finite dimensions the exchange hole extends
over several lattice sites, while in GA it is restricted to the
on-site term. The central motivation of the present paper is to
show that the failure of GA is due to the over-simplified
approximation of the exchange hole.

The GA consists of taking exchange into account in a
combinatorial fashion. The configurations considered obey
the Pauli principle in the sense that no two particles of the
same spin can be found on the same site. On the other hand
no other correlation effect exists between like spins in the
GA. Hence, the exchange hole is only local corresponding to
the infinite-dimensional case �Fig. 1�. It is known, however
�see, for example, Refs. 7 and 28� that the exchange hole in
a finite number of dimensions has a nontrivial functional
form �Fig. 1�.

The GA as well as extensions of it enjoy widespread use
in a variety of strongly correlated problems. The Brinkman-
Rice transition has been used by Vollhardt to describe the
solid-liquid phase transition in He3.19 More recent applica-
tions of the GA include extension to the time-dependent
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FIG. 1. Pair-distribution functions of systems of noninteracting
fermions on a lattice for different dimensions at half-filling. The
Gutzwiller approximation uses the pair-distribution function of the
infinite limit for all dimensions.
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case,29 implementation for the multiband case,30,31 ensembles
with varying particle number �Bardeen-Cooper-Schrieffer
wavefunction�,32 and the calculation of matrix elements be-
tween ground and excited states.33 Variants of the approxi-
mate solution have also been applied34–36 in the resonating
valence bond method,37–39 which is based on a completely
projected Gutzwiller wavefunction.

In this paper we augment the GA with an improved treat-
ment of the exchange hole. Our calculation samples the exact
distribution in the occupation number representation. The
hopping term, being the expectation value of an operator
which is not diagonal in occupation number representation is
approximated in a similar fashion as in the original GA.
Implementation consists of Monte Carlo �MC� sampling first
used to calculate the exact GWF by Yokoyama and Shiba.40

It may also be possible to approximate the distribution with
the exchange hole as was done for continuous systems of
interacting fermions.41–43 For lattices a two-site approxima-
tion which takes into account the exchange hole has been
proposed by Razafimandimby.44

To motivate the central idea of our approach the dimen-
sional dependence of the exchange hole at half-filling is pre-
sented in Fig. 1. Due to exchange there is an effective repul-
sion between nearest-neighboring �r=1� particles which is
strongest in the case of one dimension, and it decreases with
the number of dimensions �see also Ref. 44�. Further away
from the origin �r�1� the functions exhibit gradually de-
creasing oscillations.

Via comparison with the full GWF we show that such a
procedure brings the GA into excellent agreement with the
full GWF. The interaction energy is exact as a function of the
variational parameter, and the hopping energy also shows
close correspondence where full GWF results are available.
The antiferromagnetic order parameter is also in excellent
agreement between our approach and the full GWF calcula-
tion, while the original GA significantly underestimates anti-
ferromagnetism.

II. METHOD

A. Hubbard Hamiltonian and Gutzwiller wavefunction

The Hubbard Hamiltonian1–4 is given by

H = − t �
�i,j��

N

ci�
† cj� + U�

i=1

N

ni↑ni↓. �1�

We will assume a system with L lattice sites and with N↑ and
N↓ particles with spins up and down, respectively. For future
reference we also define the antiferromagnetic order param-
eter as

�Mz
2� =�� 1

N
�
i=1

N

�iSz�i��2	 , �2�

where Sz�i� denotes the z component of the spin at site i, �i is
either 1 or −1 depending on which sublattice site i belongs
to.

The variational wavefunction to the Hubbard model with
which we are concerned is the Gutzwiller wavefunction


�� = exp�− ��
i

ni↑ni↓�
FS� , �3�

where 
FS� indicates a Fermi sea of noninteracting fermions,
the sum in the exponential counts the number of doubly oc-
cupied sites, and � is a variational parameter. For a homoge-
neous system the Fermi sea is formed by filling in the plane-
wave states with the lowest-hopping energies,


FS� = ck1↑
† . . . ckN↑

↑
† cl1↓

† . . . clN↓
↓

† 
0� . �4�

Equation �4� can be rewritten in terms of sums over configu-
rations in real space as7


FS� = L−��N↑+N↓�/2��

g�

�

h� �

eik1·g1
¯ eik1·gN↑

] � ]

eikN↑
·g1

¯ eikN↑
·gN↑

�
� � eil1·h1

¯ eil1·hN↓

] � ]

eilN↓
·h1

¯ eilN↓
·hN↓

�cg1↑
† . . . cgN↑

↑
† ch1↓

† . . . chN↓
↓

† 
0� ,

�5�

where g and h denote the configurations of particles with
spin up and down, respectively. These configurations are
such that at most only one particle of each spin can occupy a
particular site. To save space we introduce the notation
D�k ;g� for the determinants. The normalization of the GWF
can be written

��
�� = L−�N↑+N↓��

g�

�

h�


D�k;g�
2

� 
D�l;h�
2exp�− 2�D�g,h�� , �6�

where D�g ,h� denotes the number of double occupations for
the particular configuration of up-spin and down-spin par-
ticles g and h, respectively. One can define the probability-
distribution

PGWF�g,h� = 
D�k;g�
2
D�l;h�
2exp�− 2�D�g,h�� . �7�

The exchange hole is obtained via tracing out all but two
variables corresponding to particles with parallel spin in the
distribution PGWF with �=0. With the help of PGWF one can
write expectation values diagonal in occupation representa-
tion. For example, the expectation value of the number of
double occupations can be written as

��
i

ni↑ni↓	 =

�

g,h�

PGWF�g,h�D�g,h�

�

g,h�

PGWF�g,h�
. �8�

The hopping term is not diagonal in the coordinate repre-
sentation. For example, if a hopping of an up-spin particle
between particular sites i and j is considered we have
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��
ci↑
† cj↑
�� = L−�N↑+N↓��


g�
��


h�
D��k;gij↑� �D�k;g�

�
D�l;h�
2exp�− �
D�gij↑� ,h� + D�g,h��� .

�9�

The hopping changes the configuration from g to gij↑� , hence
the determinant as well as the projection term is in general
altered. In Eq. �9� gij↑� denotes configurations with site i oc-
cupied and site j unoccupied and g configurations with site i
unoccupied and site j occupied. The prime on the sum over
the up-spin configurations indicates that only these types of
configurations enter the summation, that allow for the hop-
ping.

The hopping can leave the number of double occupations
unchanged, increase or decrease it by one. Hence we can
rewrite Eq. �9� as

��
ci↑
† cj↑
�� = L−�N↑+N↓��


g�
��


h�
D��k;gij↑� �D�k;g�

�
D�l;h�
2exp�− �
2D�g,h�

+ 	D�gij↑� ,g;h��� , �10�

where 	D�gij↑� ,g ;h� denotes the change in double occupa-
tion when an up-spin particle hops from site j to i �in other
words the configuration changes from g to gij↑� �. We now
define the estimators for hopping from site j to i as


GWF
ij↑ �g,h� = − tD��k;gij↑� �/D��k;g�

� exp�− �	D�gij↑� ,g;h�� ,


GWF
ij↓ �g,h� = − tD��l;hij↓� �/D��l;h�exp�− �	D�g;hij↑� ,h�� ,

�11�

and use these definitions to write

�GWF
ij� �g,h� = �


GWF
ij� �g,h� if site j has a particle

with spin � and

site i does not,

0 otherwise.
�

�12�

Equations �11� and �12� allow us to write the concatenated
form for the estimator for the kinetic energy as

TGWF�g,h� = �
ij�

�GWF
ij� �g,h� , �13�

and write the expectation value of the total energy as

EGWF =

�

g,h�

PGWF�g,h�
TGWF�g,h� + UD�g,h��

�

g,h�

PGWF�g,h�
, �14�

where the summations are now unrestricted. A Monte Carlo
procedure can be constructed40 to sample the distributions
PGWF and evaluate the expectation values defined in Eq.
�14�.

The expectation value of the energy for the GWF was
solved exactly in one dimension by Metzner and Vollhardt.9

The Fermi step in this case is finite for all finite values of the
interaction strength, hence the Gutzwiller wavefunction was
shown to be metallic in one dimension. Millis and
Coppersmith13 have later generalized this conclusion to any
system of finite dimensions.

B. Gutzwiller approximation

In the Gutzwiller approximation the determinant factors
of the probability-distribution PGWF and of the estimator
TGWF �Eq. �10�� is replaced by configurational averages ob-
tained from the noninteracting system. Our description of
how this is done is based on Ref. 7.

Considering only the up-spin channel one can write the
normalization of the Fermi sea as

↑�FS
FS�↑ = L−N↑�
g


D�k;g�
2 = 1, �15�

since the wavefunctions that enter are normalized plane-
waves themselves. As the sum in Eq. �15� is over all con-
figurations of up-spin particles on the lattice, such that at
most one particle occupies a particular site we can approxi-
mate each term by its average as


D�k;g�
2 � �
D�k;g�
2� =
LN↑

CN↑
L , �16�

where CN↑
L denotes the number of ways N↑ particles can be

placed on L lattice sites. The down-spin particles can be
handled similarly. This approximation results in a simplified
probability distribution as compared to PGWF

PGA�g,h� = exp�− 2�D�g,h�� , �17�

allowing the rewriting of averages for quantities diagonal in
the occupation number representation. For example, the av-
erage number of double occupations in the GA can be writ-
ten as

��
i

ni↑ni↓	 =

�

g,h�

PGA�g,h�D�g,h�

�

g,h�

PGA�g,h�
. �18�

Approximating the kinetic energy is complicated by the
fact that the hopping is not diagonal in the occupation num-
ber representation. Here a configurational average is needed
for products of two determinants D��k ;g��D�k ;g� for par-
ticular hopping terms. Considering only the up-spin channel
one can write

T = ↑�FS
ci↑
† cj↑
FS�↑ = L−N↑�

g
�D��k;gij↑� �D�k;g� .

�19�

One can also evaluate the average hopping over the Fermi
sea explicitly as
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T =
1

L
�
k

�exp��ik · �Ri − Rj��� , �20�

where Ri and Rj denote the pair of lattice sites involved in
the hopping, and the asterisk indicates that the sum be per-
formed over occupied states only. The configurations enter-
ing the sum in Eq. �19� are the ones with one up-spin elec-
tron on site j and site i unoccupied. Of such configurations
there are CN↑−1

L−2 . Hence, the approximation

D��k;gij↑� �D�k;g� � �D��k;gij↑� �D�k;g�� = T
LN↑

CN↑−1
L−2

�21�

can be introduced. Using this approximation the average
hopping of an up-spin particle from site j to site i can be
written

��
ci↑
† cj↑
��

��
��

= T
CN↑

L

CN↑−1
L−2

�

g�

�
�

h�

PGA�g,h�exp�− �	D�gij↑� ,g;h��

�

g�

�

h�

PGA�g,h�
.

�22�

Equation �22� is an approximate expression for the hop-
ping energy. It allows us to formulate an estimator for the
hopping which is diagonal in the occupation number repre-
sentation. We can then write the estimator for the hopping
from site j to site i �the effective operator which is averaged
in order to calculate the hopping energy� as


GA
ij↑ �g;h� = T̃↑ exp�− �	D�gij↑� ,g;h�� ,


GA
ij↓ �g;h� = T̃↓ exp�− �	D�g;hij↓� ,h�� , �23�

where

T̃� = T
CN�

L

CN�−1
L−2 . �24�

We can use these definitions to write

�GA
ij��g,h� = �


GA
ij��g,h� if site j has a particle

with spin � and

site i does not,

0 otherwise.
�

�25�

Equations �23� and �25� allow us to write the concatenated
form for estimator of the kinetic energy again as an unre-
stricted sum

TGA�g,h� = �
ij�

�GA
ij��g,h� , �26�

resulting in the expectation value of the total energy as

EGA =

�

g,h�

PGA�g,h�
TGA�g,h� + UD�g,h��

�

g,h�

PGA�g,h�
. �27�

Note that for the noninteracting system �U=0� the energy is

exact by construction �one could also define the constants T̃�

from this condition�. In summary, the estimator for the hop-
ping is the product of a scaling factor and a factor which
accounts for the change in the number of double occupations
caused by the hopping itself.

In summary, the GA can be considered a two-step ap-
proximation: the exact distribution PGWF, which is compli-
cated by the determinant factors, is replaced by the simpler
PGA, and the estimator for the hopping TGWF is replaced by
TGA. In the TGWF the quotient of determinants, which origi-
nates from the fact that the hopping is not a diagonal opera-
tor in the occupation number representation is replaced by an
average value to arrive at the approximation TGA. The ap-
proximate estimator TGA is diagonal in the occupation num-
ber representation.

In the case of the GA the average energy �Eq. �27�� and
other relevant observables can be evaluated analyti-
cally.3,4,7,8,19 The resulting MIT, known as the Brinkman-
Rice transition,8 is characterized by the vanishing of the ex-
pectation value of the double occupations as well as that of
the hopping energy. The latter can be shown to be a result of
the closure of the Fermi step.7,8,19

C. Implementing the exchange hole

In the following we investigate the effect of the exchange
hole on the Gutzwiller approximation. To this end we substi-
tute PGWF for PGA in Eq. �27�. We also scale the constants T�

so that the hopping energy remains exact in the noninteract-
ing limit. We refer to this approximation scheme as the
GA-X. For the expression of the energy we can write

EGA−X =

�

g,h�

PGWF�g,h�
TGA−X�g,h� + UD�g,h��

�

g,h�

PGWF�g,h�
. �28�

The estimator for the hopping TGA−X has the same form as
TGA, the only difference is the scaling factor to satisfy the
condition in the noninteracting limit.

The expression for the average number of double occupa-
tions as a function of the variational parameter � in our
scheme is the same as in the exact GWF case �Eq. �8��. This
does not necessarily mean that we obtain the exact expecta-
tion value of this operator, however. Since the hopping is
approximated as a function of the parameters t and U, the
minimization in the parameter � does not guarantee that the
exact � is obtained.

D. Monte Carlo sampling

To sample the distributions described in the previous sec-
tion we apply the Monte Carlo method on a lattice due to
Yokoyama and Shiba.40 Our system consists of a fixed num-

HETÉNYI, EVERTZ, AND VON DER LINDEN PHYSICAL REVIEW B 80, 045107 �2009�

045107-4



ber of sites L and up-spin and down-spin particles N↑ and N↓,
respectively. Our Monte Carlo method consists of generating
configurations with at most one particle of each spin on each
lattice site. We generate the configurations using two types of
moves. We attempt moves of particles of a particular spin to
sites without particles of that spin. We also attempt exchange
moves between sites occupied by particles of opposite spin,
and between sites which are doubly occupied and empty. We
checked our Monte Carlo code against a full GWF calcula-
tion based on exact diagonalization for 12 sites and found
excellent agreement.

III. RESULTS

In the following we apply the method described above to
the one-dimensional Hubbard model at half-filling. In order
to test our Monte Carlo program we perform calculations for
GA. We have performed calculations with sizes up to 180.
The result in the thermodynamic limit is also known.7 All of
these calculations are based on MC runs of on the order of
106 steps. The hopping and interaction energies were calcu-
lated for an U=1 system. In order to stabilize the search for
the minimum, for all of the following calculations, we fitted
the calculated data points.45 The results for the absolute
value of the total energy are shown in Fig. 2 as well as the
absolute value of the kinetic energy shown in the inset. The

Brinkman-Rice transition is clearly visible for the curve cor-
responding to the thermodynamic limit. The calculations of
systems with different sizes converge to the curve in the
thermodynamic limit, in particular they converge to zero in
the region of U where the Brinkman-Rice transition predicts
insulating behavior �where the energy is zero�.

We note that often the Fermi step is taken as the indicator
of the Brinkman-Rice MIT.7,40 To calculate the Fermi step
the density of states in momentum space is calculated. One
can argue that as the Fermi step closes the hopping energy
becomes zero, and for an open Fermi step the hopping en-
ergy has to be finite.7 Hence, we can take the hopping energy
as an indicator of the MIT. Moreover, the interaction energy,
or rather the number of double occupations, is zero as well.

In Fig. 3 the variational parameter � is shown as a func-
tion of the interaction parameter U for the full GWF and the
GA-X calculations. Quantitative agreement is found between
the two curves. In Fig. 4 the hopping energies as a function
of the variational parameter � are compared from an exact
calculation for the full GWF, the GA-X, and the GA schemes
for a system at half-filling with 60 lattice sites. In the case of
60 sites Monte Carlo sampling40 was used in all cases. The
agreement between the exact GWF and GA-X is excellent,
the exact curve essentially coincides with the GA-X results.
GWF and GA-X differ only in the definition of the estimator
for the kinetic energy. The fact that the kinetic energies of the
two approaches essentially coincide is indirect evidence that
the GA-X approximation is metallic. More evidence for this
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FIG. 2. Absolute value of the total energy per particle calculated
in the Gutzwiller approximation: Monte Carlo results for various
system sizes and analytical results for the thermodynamic limit. The
inset shows the absolute value of the hopping energy.
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FIG. 4. Hopping energy calculated via the Monte Carlo sam-
pling �Ref. 40� of the Gutzwiller wavefunction, the Gutzwiller ap-
proximation with the exchange hole, and the standard Gutzwiller
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FIG. 5. Absolute value of the hopping energy calculated from
the GA-X approximation for three different system sizes.
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conclusion is provided by comparing the hopping energy for
different system sizes, shown in Fig. 5 for sizes 36, 48, and
60. The hopping energy, whose becoming zero indicates the
Brinkman-Rice MIT, shows negligible size independence
and does not become zero in the range of U considered
�whereas the size dependence is strong for the GA �Fig. 2�.

Since the interaction energy as a function of the varia-
tional parameter is identical for the GWF and GA-X, our
numerical evidence suggests that the GWF and the GA-X
coincide. It is of interest to note that the GA and the GWF
coincide in the case of infinite dimensions, where the form of
the exchange hole assumed in the GA coincide with the exact
exchange hole. Our results indicate that implementing the
exact exchange hole in one dimension brings the GA into
agreement with the GWF in one dimension.

In Fig. 6 we present the antiferromagnetic order param-
eter �defined in Eq. �2�� for a system of 60 lattice sites. The
three different methods GWF, GA-X, and GA are compared.
Implementation of the exchange hole recovers antiferromag-
netism entirely, a result that can be anticipated from the re-
sults on the hopping energy �Fig. 4�. We stress that metallic-
ity and antiferromagnetism are recovered together as the
exchange hole is implemented. In Refs. 46 and 47 expres-
sions are given for the spin-correlation functions. Using
these expressions we have calculated the antiferromagnetic

order parameter defined in Eq. �2� and we have obtained a
value of �Mz

2�=0.0201 for a system of 60 sites with �→� in
good agreement with our result of �Mz

2�=0.022
0.005. Our
recovery of metallic behavior is related to the recovery of
antiferromagnetic behavior.

In Figs. 7 and 8 we present comparisons of the total en-
ergies and double occupations between various system sizes.
The full GWF results in the thermodynamic limit due to
Metzner and Vollhardt9,10 are also shown. In the inset in Fig.
7, which shows the absolute value of the energy on a loga-
rithmic scale, the energies appear to converge to the exact
solution of the GWF in the thermodynamic limit. The loga-
rithmic deviations appear to be larger at large U. The average
number of double occupations as a function of the variational
parameter � are shown in Fig. 8. The exact expression for the
number of double occupations in the thermodynamic limit as
a function of � for the GWF wavefunction is given in Refs.
9 and 10. The agreement between the exact result and the
GA-X results is good for lower values of �, discrepancies
appear only at large values of �, noticeable mainly at values
larger than the value that minimizes the energy at U=20 �see
Fig. 3�. The discrepancy can be partly attributed to finite-size
effects, which tend to overestimate ordering, and thereby
suppress double occupations, and also the difficulty in sam-
pling with the standard MC method40 in systems which are
approaching a critical-point ��→��.

IV. CONCLUSIONS

We have investigated the effect of implementing the ex-
change hole in the Gutzwiller approximation in one dimen-
sion for the Hubbard model at half-filling. The estimator
used for the hopping energy was taken from the Gutzwiller
approximate solution, but the distribution of configurations
was the one corresponding to the exact solution of the
Gutzwiller wavefunction, with the exchange hole imple-
mented. Comparison with exact calculations based on the
Gutzwiller wavefunction were presented.

The resulting approximation is in excellent quantitative
agreement with the exact result. The approximate hopping
and the hopping of the exact solution of the GWF are in
excellent agreement. When compared to the Gutzwiller ap-
proximation we find that through implementing the
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exchange-hole metallicity and antiferromagnetism of the full
GWF are both recovered. Our essential conclusion here is
that by implementing the exchange hole one can account for
the antiferromagnetic correlations present in the exact GWF,
and this procedure results in the recovery of metallicity.

As is well-known11,12,21 the Gutzwiller approximation is
exact in the limit of infinite dimensionality. What our results
suggest is that implementation of the exchange hole brings
the Gutzwiller approximation into agreement with the full
GWF results. In the future we plan to study this question in
more than one finite dimension.

From a methodological point of view our result may lead
to improvements in the future. It is possible to construct

approximate potentials for the exchange hole.41–43 Such an
approximate potential could then be sampled which would
result in an approximate GWF, or the exact distribution could
be sampled facilitated by the approximated potential via um-
brella sampling,48 stochastic potential switching,49 or accel-
erated Monte Carlo methods.50–53
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