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We study an effective theory for QCD at finite temperature and density which contains the leading

center symmetric and center symmetry breaking terms. The effective theory is studied in a flux

representation where the complex phase problem is absent and the model becomes accessible to

Monte Carlo techniques also at finite chemical potential. We simulate the system by using a generalized

Prokof’ev-Svistunov worm algorithm and compare the results to a low temperature expansion. The phase

diagram is determined as a function of temperature, chemical potential, and quark mass. The shape and

quark mass dependence of the phase boundaries are as expected for QCD. The transition into the

deconfined phase is smooth throughout, without any discontinuities or critical points.
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Obtaining a deeper understanding of the QCD phase
diagram will be one of the central goals of particle physics
in the coming years. With running and upcoming experi-
ments that drive this development, also the theoretical side
is challenged to improve our understanding of the QCD
phase structure. Analyzing phase transitions is clearly a
nonperturbative problem, and suitable techniques have to
be applied. For a vanishing chemical potential, lattice QCD
is a powerful method that provides reliable quantitative
information on the QCD finite temperature transition.
However, for nonvanishing density the notorious complex
phase problem so far limits numerical lattice QCD studies
to painfully small volumes.

For quenched QCD, where the quark contributions to the
path integral are neglected, the deconfinement transition is
related to the center group Z3 of SU(3), which is a sym-
metry in the confined low temperature phase, while it is
broken spontaneously above the deconfinement tempera-
ture [1]. When one couples the dynamics of the quark
fields, the center symmetry is broken explicitly by the
fermion determinant. This explicit breaking overlays the
spontaneous breaking of the quenched theory. However, as
for spin systems, one may expect that also for QCD the
underlying symmetry still governs parts of the dynamics of
the full theory, e.g., via the center properties of canonical
determinants [2].

In order to study the role of center symmetry for the
QCD phase diagram, we analyze an effective theory which
contains the leading center symmetric and center symme-
try breaking terms. It can be mapped exactly to a flux
representation [3], without a complex phase problem. So
far, the model was studied only in a very limited parameter
range [3–7]. Here we apply a generalization of the worm
algorithm [8] which allows us to efficiently explore the full
range of temperatures and chemical potential values. This
constitutes one of very few examples where a QCD-related
complex phase problem can be solved. We study the phase

diagram of the effective theory and analyze what role the
center degrees of freedom of QCD play for the phase
structure of hot and dense matter.
Effective center theory and flux representation.—The

effective center theory is defined by the action [3]

S½P� ¼ �X
x

�
�
X3
�¼1

½PxP
�
xþ�̂ þ c:c:� þ �Px þ ��P�

x

�
: (1)

The dynamical degrees of freedom are the center variables

Px 2 Z3 ¼ f1; ei2�=3; e�i2�=3g at the sites x of a three-
dimensional cubic lattice. The partition function is a sum
over their configurations: Z ¼ P

fPg expð�S½P�Þ. The first

term of (1) is a nearest neighbor interaction which is
invariant under global center transformations (Px ! zPx,
z 2 Z3). The form of this term may be obtained from a
strong coupling expansion of the effective action for the
Polyakov loop which in quenched QCD is the order pa-
rameter for center symmetry and for confinement. The
variables Px take over the role of the local Polyakov loops.
Although in full QCD center symmetry is broken explicitly
by the quarks, the Polyakov loop is still used to monitor
confinement properties and to determine the crossover
temperature (see, e.g., [9,10]). The strong coupling expan-
sion also identifies the parameter � as an increasing func-
tion of the temperature T of the underlying lattice QCD
theory, and for brevity we refer to � as temperature.
The second term of (1) may be obtained from a hopping

(i.e., large quark mass) expansion of the fermion determi-
nant and contains the leading center symmetry breaking
contributions. The parameters� ¼ �e� and �� ¼ �e�� are
related to the chemical potential �. The expansion shows
that � ¼ NfhðmÞ, where Nf is the number of flavors and

hðmÞ is a function of the QCD quark mass m which
decreases with increasing m. We refer to � as the inverse
mass parameter.
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For � ¼ 0, the model reduces to the 3-state Potts model,
which is known to have a first-order transition at � ¼
0:183 522ð3Þ [11]. For small � and vanishing �, the first-
order transition persists, giving rise to a short first-order
line which terminates at a critical end point at ð�; �Þ ¼
½0:183 127ð7Þ; 0:000 26ð3Þ� [11]. For a small nonzero �,
the system has been analyzed with techniques based on the
Swendsen-Wang cluster algorithm [4], with reweighting
[5] and with imaginary � [6]. Within the flux representa-
tion [3] local Metropolis updates were also used [3,4,7]. It
has been demonstrated that turning on the chemical poten-
tial softens the transition and shifts the critical end point
towards smaller values of �. So far, no simulations were
done in the parameter region where the complex phase
problem of the formulation (1) becomes severe (see [4] for
a discussion of that regime).

The flux representation [3] solves the complex phase
problem. We briefly summarize it to discuss our observ-
ables and conventions: The Boltzmann factors for the
nearest neighbor terms of (1) can be rewritten as

e�½PxP
�
xþ�̂þc:c:� ¼ C

Xþ1

bx;�¼�1

Bjbx;�jðPxP
�
xþ�̂Þbx;� : (2)

The sum is over flux variables bx;� 2 f�1; 0;þ1g attached
to the links of the lattice. The constants C and B depend
on the temperature � via C ¼ ðe2� þ 2e��Þ=3 and B ¼
ðe2� � e��Þ=3C. Similarly,

e�Pxþ ��P�
x ¼ Xþ1

sx¼�1

MsxP
sx
x ; (3)

where we sum over monomer variables sx 2 f�1; 0;þ1g
attached to the sites x. It is straightforward to work out the
monomer weights Ms for s ¼ �1; 0;þ1,

Ms ¼ 1

3

�
e�þ �� þ 2e�ð�þ ��Þ=2 cos

� ffiffiffi
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p
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ð�� ��Þ � s
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3

��
:

(4)

The weights Ms turn out to be non-negative.
Inserting (2) and (3) gives rise to a complete factoriza-

tion of the dependence on the dynamical variables Px, and
the sum over all configurations can be performed. One
finds (we drop an irrelevant overall constant)

Z ¼ X
fb;sg

Wðb; sÞY
x

T

�X
�

½bx;� � bx��̂;�� þ sx

�
: (5)

Z is now a sum over configurations fb; sg of the flux and
monomer variables. Each configuration comes with a real

non-negative weight factor Wðb; sÞ ¼ ðQx;�B
jbx;�jÞ �

ðQxMsxÞ. For every link with nonvanishing flux a factor

B is taken into account. Sites x contribute with factorsMsx

according to the sx.
The flux-monomer configurations are subject to con-

straints: In (5), TðnÞ is the triality function defined as
TðnÞ ¼ �nmod3;0. The constraints enforce that at every site

x the total flux from both, flux variables bx;� and monomers

sx, is a multiple of 3. In the flux form (5) the partition sum
contains only real and non-negative contributions and thus
the complex phase problem is solved.
In this Letter, we focus on bulk observables such as the

order parameter P and the corresponding susceptibility,
which both are obtained as derivatives of the free energy:
hPi ¼ @ lnZ=@� and �P ¼ @2 lnZ=@�2. In a similar way,
one obtains the internal energy U and the heat capacity C.
For an efficient evaluation the identities @Mþ1=@� ¼ M0,
@M0=@� ¼ M�1, and @M�1=@� ¼ Mþ1 are useful. In the
end, all our observables are expressed in terms of the total
flux and monomer numbers and their moments.
Simulation with the worm algorithm.—Having estab-

lished the flux representation, we now must find a suitable
algorithm for an efficient Monte Carlo update. We here use
a generalized form of the Prokof’ev-Svistunov worm al-
gorithm [8]: The worm starts at a randomly chosen site and
moves along links until it returns to the starting point where
it terminates. We allow for two different moves of our
worm: (A) The worm randomly chooses a new direction
at a site and changes the flux at the corresponding link by
�1; (B) the worm decides to change a monomer variable
by �1 and then randomly hops to another site where the
monomer variable is changed by �1. The moves are
offered with equal probability, produce only configurations
that are compatible with the constraint, and lead to an
ergodic algorithm. The Metropolis acceptance probabil-
ities are pA ¼ B�b when changing a flux variable b by an
amount of �b (move A) and pB ¼ Ms0=Ms for changing a
monomer variable from s to s0 (move B). A more complete
account of the algorithm and its implementation will be
given elsewhere.
We generated ensembles for lattice sizes 363, 483, 643,

and 723. For the inverse mass parameter we used � ¼ 0:1,
� ¼ 0:01, � ¼ 0:005, and � ¼ 0:001. The evaluation of
our observables hPi, �P, U, and C is based on up to 106

configurations, separated by 10 worms for decorrelation.
Autocorrelation times were determined and used in the
estimate for the statistical errors. Finite volume effects
were analyzed by comparing the different system sizes
and are negligible for our final results.
The results from the new worm algorithm were checked

by using several strategies. For vanishing � the known
results [11] for the 3-state Potts model with external mag-
netic field were reproduced. For small values of � and
arbitrary � and �, we used low temperature expansion
techniques up to �3. For small � we found excellent agree-
ment between the Monte Carlo results and the perturbative
series (see Fig. 2). Finally, for all our production and
analysis codes two independent programs were written
for cross-checks.
Results from the Monte Carlo calculation.—We begin

the discussion of our results with the order parameter hPi,
which—as discussed above—is identified with the
Polyakov loop of QCD. In Fig. 1, we show the results for
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hPi=V as a function of � and � for our 363 ensembles at
� ¼ 0:01. For roughly 450 points in the �-� plane, the
values of hPi=V were evaluated and used for the 3D plot. In
the rear left corner and for small � and �, no data were
computed. hPi=V is expected to be close to 1 in the rear left
corner. For small � and � there is a sizable region where
the expectation value hPi=V is small and center symmetry
is broken only very mildly. Transferring this finding from
the effective center theory to QCD implies that for small
temperature and density, matter is confined. When � or �
are increased, the system undergoes a change and hPi=V
reaches values close to 1. For QCD this implies that both
temperature and�may be used to drive the system into the
deconfined phase characterized by a large Polyakov loop.

Next we identify the phase boundary. For that purpose
we studied the susceptibility �P and the heat capacity C as
a function of � at fixed � (symbols with horizontal error
bars in Figs. 2 and 3) or as a function of � at fixed �

(vertical error bars) and determined the position of the
maximum: We fitted �p and C near the maxima with a

parabola and obtained the position of the maximum as one
of the fit parameters. The corresponding statistical error
was computed with the jackknife method. In Fig. 2, we
show the positions of the maxima of �P in the �-� plane.
We compare the results for 4 values of the inverse mass
parameter � and connect data at the same � with a dotted
line to guide the eye. The dashed horizontal line at the top
marks the value of the critical � for the 3-state Potts model,
i.e., the situation at � ¼ 0. The dashed curves near the
bottom of the plot are the results from the perturbative
series for small � discussed above. The Monte Carlo data
nicely approach these curves for � ! 0.
The curves in Fig. 2 separate the phases with a small

order parameter and with hPi=V � 1, i.e., the confined and
the deconfined phases. The phase boundaries depend on
the inverse mass parameter �, and their behavior is as
expected for QCD: The intercept of the phase lines
with the � axis shifts to the left with decreasing quark
mass (increasing �) because a smaller � is sufficient to
excite lighter states. Also the intercept with the � axis
drops with increasing �, corresponding to the fact that
for quenched QCD (infinite quark mass) the transition
temperature is considerably higher than the crossover tem-
perature of QCD with physical quark masses. The mass
dependence of the phase boundaries thus is as expected
for QCD.
A key problem of the QCD phase diagram is the ques-

tion about the nature of the various transitions and phases.
Unless one goes to very high densities where more exotic
phases exist, two principal phases are expected. A phase
with conventional matter (confined with broken chiral
symmetry) and a plasma phase (deconfined and chirally
symmetric). In some parameter regions also a quarkyonic
phase with confinement but restored chiral symmetry has
been discussed. For the transition lines a standard scenario
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FIG. 2 (color online). Phase diagram as obtained from the
maxima of the Polyakov loop susceptibility �P. We show results
at 4 values of the inverse mass parameter �. The dashed curves at
the bottom are the results of the � expansion, and the horizontal
line marks the critical value of � for the � ¼ 0 case.
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FIG. 1 (color online). The order parameter hPi=V as a function
of temperature � and chemical potential � from our 363,
� ¼ 0:01 ensembles. Near the rear left corner, no data were
computed. hPi=V has values close to 1 there. For small � and �
the order parameter approaches 0.
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FIG. 3 (color online). Comparison of phase boundaries ob-
tained from the maxima of susceptibility �P and heat capac-
ity C.
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is that at � ¼ 0 for physical quark masses the finite tem-
perature transition is merely a crossover [12], where differ-
ent second derivatives of the free energy peak at different
temperature values [9,10]. With increasing� the crossover
region narrows and terminates at a critical end point.
From the end point on a first-order transition line continues
(which at some point might hit other transitions to the
exotic phases mentioned). Alternative scenarios suggest
that either no critical end point appears and crossover
type of behavior persists also for large � and low tempera-
ture or that even more than one end point might exist.
For a glimpse of the current debate, see, e.g., [13].

While we cannot address questions concerning chiral
symmetry in the effective center theory, we can analyze the
type of transitions that take place at the phase boundaries.
To determine the nature of the transitions, we used two
techniques. We analyzed histograms for the distribution of
the order parameter and the action near the phase bounda-
ries. For a first-order transition they would display a double
peak structure near the critical line. We found only single
peaks and thus rule out first-order behavior. The second
approach is a comparison of the normalized susceptibilities
and heat capacities �P=V and C=V from lattices with
different volumes. For a first-order transition the height
of the maxima diverges proportional to V, while for a
continuous transition the divergence is modified by a criti-
cal exponent. A height which is independent of V indicates
a smooth crossover. Our analysis shows that for the phase
boundaries of Figs. 2 and 3 the height is independent of V
for all volumes studied, and that the transitions in the
effective center theory are smooth crossover lines.

Once the crossover nature is established, one may ask
how wide the transition region is—similar to the finite
temperature crossover of QCD at zero density, which is
20–30 MeV wide. In order to get an estimate for the width
of the crossover region, in Fig. 3 we compare the positions
of the maxima of �P and of C for two values of �. The fact
that the corresponding lines do not coincide stresses the
crossover nature of the transition, and the plot demon-
strates that the crossover region is rather wide for most
of the parameter values. Only for small � and � do the
lines approach each other, anticipating the first-order be-
havior known for very small � and � [4,5].

Concluding remarks.—In this Letter, we report on our
results for the phase diagram of an effective theory for the
center degrees of freedom of QCD. The flux representation
solves the complex phase problem, and we develop a worm
algorithm for a Monte Carlo calculation in a wide range of
temperatures and chemical potential.

The outcome of our analysis is a version of the QCD
phase diagram when only the center degrees of freedom are
considered. The phase diagram shares many features with
the conjectured full QCD phase diagram: The transition to
the deconfined phase can be driven by both, temperature or
�, and the quark mass dependence is as expected for QCD.
The phase boundaries between a phase with only very

small center symmetry breaking (hPi=V � 0) and a phase
with hPi=V � 1 has a shape which is similar to the one
conjectured for QCD. For all parameter values studied, the
transition is of smooth crossover type. We conclude that
center symmetry alone does not provide a mechanism for
first-order behavior in the QCD phase diagram.
Various future research directions may be followed: The

effective theory can be made more realistic by replacing
the Z3 spins by continuous SU(3) valued variables (here
some work is in progress, and also for this theory the
complex phase problem can be solved by a suitable flux
representation). Furthermore, it would be desirable to take
into account also the fermion nature of the problem—an
aspect which is absent in the current effective action.
Another interesting direction is of a more technical nature:
With our effective theory we have a reference example of a
QCD related system where the complex action problem is
solved. This reference theory can and should be used to test
the reliability and limitations of various techniques for
QCD with chemical potential, such as reweighting, series
expansions, or complex Langevin methods.
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