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The low-temperature properties of the two-dimensional attractive Hubbard model are strongly influenced
by the fermion density. Away from half-filling, there is a finite-temperature transition to a phase with s-wave
pairing order. However, Tc is suppressed to zero at half-filling, where long-range charge-density-wave order also
appears, degenerate with superconductivity. This paper presents determinant quantum Monte Carlo simulations
of the attractive Hubbard model in the presence of a confining potential Vtrap which makes the fermion density ρ

inhomogeneous across the lattice. Pair correlations are shown to be large at low temperatures in regions of the
trapped system with incommensurate filling, and to exhibit a minimum as the local density ρ(i) passes through
one fermion per site. In this ring of ρ(i) = 1, charge order is enhanced. A comparison is made between treating
Vtrap within the local-density approximation (LDA) and in an ab initio manner. It is argued that certain sharp
features of the LDA result at integer filling do not survive the proximity of doped sites. The critical temperature
of confined systems of fixed characteristic density is estimated.
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I. INTRODUCTION

Studies of the interplay of spatial inhomogeneity and
superconductivity have a long history. A seminal early result
was Anderson’s realization1 that although the breaking of
translation invariance by disorder renders momentum no
longer a good quantum number, pairing still occurs between
appropriately chosen (time reversed) states. Numerical studies
within the Bogoliubov–de Gennes approximation,2,3 quantum
Monte Carlo (QMC),4 and other approaches have quanti-
fied the magnitude of disorder which superconductivity can
withstand.5 In these studies, and the granular superconducting
materials they model,6 regions of pairing order coexist with
normal, or insulating, phases. Superconductivity can be de-
stroyed by various mechanisms, including phase fluctuations
between the order parameter on different islands where Cooper
pairs exist,7 or breaking of the Cooper pairs themselves.8 The
dominant mechanism determines the appropriate modeling,
e.g., a description within the disordered boson9 or fermion
Hubbard Hamiltonians, or “phase-only” descriptions with the
XY model and its variants.10

Recently, experiments on ultracold atoms have provided
a rather different realization of inhomogeneity in the form
of a smoothly varying confining potential which produces a
system with a radial density profile, maximal at the trap center
and falling off to zero at the periphery.11 Much attention has
focused on repulsively interacting bosons and fermions.12,13

In this case, a Mott insulator may coexist with superfluid or
normal phases. For fermions, the Mott insulator also exhibits
antiferromagnetic correlations at very low temperatures. At
present, experimentally accessible temperatures for fermionic
systems are such that a degenerate Fermi gas has been
observed,14 along with signatures of the Mott phase.15,16 The
ultimate objective is insight into the ground-state physics of
the repulsive Hubbard model (RHM), and, in particular, the

fundamental issue of d-wave superconducting order and its
interplay with antiferromagnetism.17

This goal for repulsive fermions awaits the attainment of
lower experimental temperatures. In the interim, it is useful to
perform careful studies of attractive systems. This case is not
only of interest in its own right, but also QMC simulations can
often attain lower temperatures for attractive models, and thus
can track experiments closer to transitions into ordered phases.

The focus of the present paper is the description of
the behavior of attractively interacting fermions in a two-
dimensional confining potential. Some of the issues are similar
to the repulsive case, in particular, the coexistence of phases as
the density varies across the trap.18 However, the attractive case
has several important distinctions, specifically the existence of
known finite-temperature phase transitions in two dimensions.
In addition, in the repulsive case there is a broad range of
chemical potentials μ which fall within the “Mott gap” and for
which the fermion density ρ = 1. That is, the compressibility
κ = ∂ρ/∂μ = 0 at ρ = 1. For the confined system, this implies
an extended region of commensurate density, spatial sites
which have a value of the local confining potential which falls
within the Mott gap. In the attractive case, the compressibility
is finite (κ �= 0) at commensurate density. As a consequence,
the region of half-filling is a truly one-dimensional ring as
opposed to an annulus of finite thickness.

A key result of this work is that the unique features of
charge-density-wave physics at the single value of chemical
potential which gives commensurate filling do not survive
coupling to neighbors of incommensurate density. Thus the
correlations which appear in a homogeneous system with
commensurate filling are never achieved in a trap; the local-
density approximation (LDA), in which the behavior of each
site in a confining potential is assumed to be that of a
homogeneous system with global density matching the local
filling, breaks down at that point.
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This paper is organized as follows: In the next section
we describe the specific Hamiltonian, the attractive Hubbard
model (AHM), and aspects of the computational methodology,
determinant quantum Monte Carlo (DQMC), which will be
used. Results are then presented within the LDA as well
as from direct simulations of confined systems, and the
two approaches are compared. Next, we present a finite-size
extrapolation using data from systems of different sizes
at constant characteristic density, and estimate the critical
temperature of the confined AHM. A concluding section
summarizes the results and indicates some remaining open
questions.

Studies of the AHM with inhomogeneity have been
performed with variational Monte Carlo,19 Bogoliubov–de
Gennes,20,21 and Gutzwiller approaches.22,23 Of particular
relevance here is work within dynamical mean-field theory
(DMFT) and a two-site impurity solver,24 which suggested that
the half-filled physics is stabilized by a confining potential, and
that an extended supersolid phase of commensurate density
exists in a trap.

II. MODELS AND COMPUTATIONAL APPROACH

The attractive Hubbard Hamiltonian, in the presence of a
confining potential, reads

Ĥ =−t
∑

〈i j〉
(c†iσ c jσ + c

†
jσ ciσ ) − |U |

∑

i

(ni↑ − 1/2)(ni↓−1/2)

−
∑

i

{μ − Vtrap |i |2}(ni↑ + ni↓) . (1)

Here c
†
iσ (ciσ ) are creation (destruction) operators at spatial site

i for two different species of fermions σ . We choose the center
of the trap to be at a plaquette center and set the origin there,
so that the coordinates ix and iy take half-integer values. In the
condensed-matter context, σ = ± 1

2 is the electron spin. For
cold atoms, σ labels two hyperfine states. We will consider the
case of square lattices of linear size L. The hopping parameter
t can be tuned by changing the optical lattice depth;25 in
the following, t = 1 is chosen to set the scale of energy.
The sum

∑
〈i j〉 is over all near-neighbor pairs of sites, and∑

i is over all sites. The on-site attraction |U | can be tuned
through the application of a magnetic field via a Feshbach
resonance. The chemical potential μ is set to get the desired
number of particles N . Finally, Vtrap is the trap curvature which
determines the strength of the confining potential.

In DQMC,26 the partition function Z = Tr e−βĤ is written
as a path integral by discretizing the inverse temperature β into
M intervals of size �τ = β/M . The Trotter approximation27

e−�τĤ � e−�τK̂e−�τV̂ isolates the quartic terms (involving
the interaction U ) in Ĥ , and a discrete Hubbard-Stratonovich
field28 decouples e−�τV̂ so that only quadratic terms in
the fermion operators appear. When the trace over fermion
operators is done, Z is expressed as a sum over the different
field configurations with a weight which is the product of
two determinants (one for each value of σ ) of matrices with
dimension L2 × L2 given by the number of lattice sites. In
the case of attractive U , because the two species couple to
the Hubbard-Stratonovich field with the same sign, the two

determinants are identical and there is no sign problem.29 This
allows us to study confined systems down to arbitrarily low
temperatures, unlike the repulsive model where the largest β

accessible is β � 3–4 for confined systems with U = 4–8.18

The observables which will be the focus of this paper are the
s-wave pairing and charge-density-wave (CDW) correlation
functions,

cpair(i, j ) = 〈�i+ j�
†
i 〉,

(2)
ccharge(i, j ) = 〈ni+ jni 〉 − 〈ni+ j 〉〈ni 〉,

where �
†
i = c

†
i↑c

†
i↓ creates a pair of fermions on site i and

ni = ni↑ + ni↓ counts the fermions on site i . Notice that these
depend on i and not just on the separation j . We also define
the associated structure factors

PS =
∑

i j

cpair(i, j ),

(3)
SCDW =

∑

i j

(−1) j ccharge(i, j ).

In addition, we study the local quantities

ρ(i) = 〈ni↑〉 + 〈ni↓〉,

t(i) = 1

2

〈i j〉∑

j

(c†iσ c jσ + c
†
jσ ciσ ), (4)

D(i) = 〈ni↑ni↓〉 − 〈ni↑〉〈ni↓〉;
the density ρ(i) has already been used; t(i) is the kinetic
energy30 associated with the bonds of site i ; and D(i) is
the double occupancy with the trivial density dependence
subtracted.

Before proceeding with the confined case, it is useful to
review the properties of the translationally invariant case,
Vtrap = 0. In two dimensions, it is known that the half-
filled attractive Hubbard Hamiltonian has combined long-
range CDW and s-wave pairing order in its ground state,
and is unordered at nonzero temperature.31 When doped,
the symmetry between charge and pairing is broken, and
a Kosterlitz-Thouless (KT) transition to a quasi-long-range
ordered superfluid phase occurs at finite temperature. Many
numerical and analytical studies have been performed.32 The
transition temperature Tc rises rapidly as μ is made nonzero
and reaches a maximum value of Tc � 1

10 for a wide range of
fillings 0.5 < ρ < 0.9.33 The effect of inhomogeneities in the
interaction strength has also been explored.3

Consideration of the “asymmetric” particle-hole (PH)
transformation helps clarify these assertions. On a bipartite
lattice, when the down-spin operators in the AHM [Eq. (1)]
are mapped with

ci↓ ↔ (−1)ic
†
i↓, (5)

the kinetic energy is unchanged, but the interaction term
changes sign, so that the AHM maps onto the RHM [the phase
factor (−1)i is understood to take the values ±1 on alternating
sublattices]. This PH symmetry provides a simple argument
that the two-dimensional half-filled AHM can have long-range
order (LRO) only at T = 0, like the RHM.
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QMC simulations have shown that the ground state of
the half-filled two-dimensional uniform RHM is magnetically
ordered.28 PH symmetry then implies that CDW and pair order
occur simultaneously in the T = 0 half-filled AHM. To see
this, note that the z component of spin ni↑ − ni↓ in the RHM
maps onto the charge ni↑ + ni↓ in the AHM, so that magnetic
LRO in the z direction of the RHM corresponds to CDW order
of the AHM. Similarly, magnetic order in the xy plane maps
onto s-wave pairing order. The degeneracy of the z and xy

magnetic order in the repulsive model implies that CDW and
pair order occur simultaneously in the half-filled attractive
case.

A final consequence of PH symmetry is the explanation
of the occurrence of pairing order (and the absence of CDW
order) at finite temperature in the doped AHM. When doped,
μ is nonzero. Under the PH transformation of Eq. (5), the
chemical potential term μ(ni↑ + ni↓) in the AHM becomes
a Zeeman field B(ni↑ − ni↓) in the RHM (B has the same
numerical value as μ). Because the order in the RHM is
antiferromagnetic, a uniform field in the z direction makes
it energetically favorable for spins to lie in the xy plane, since
then they can tilt out of the plane and pick up field energy
without costing as much exchange energy. This lowering
of symmetry from three to two components makes possible
a finite-temperature Kosterlitz-Thouless transition in two
dimensions. The xy magnetic order which exists in the RHM
then maps to s-wave pair order in the AHM.

III. CORRELATIONS AND THE
LOCAL-DENSITY APPROXIMATION

We begin by showing the density profile in Fig. 1, along
with the local kinetic energy and the double occupancy.
Results are given both from the LDA and from a trapped
30 × 30 system with N = 564.1 ± 0.4 particles. These two
approaches yield results in very good agreement for ρ(i),
t(i), and D(i). An important point is the absence of a density
plateau at ρ = 1, in accordance with results in the LDA, and
also with a particle-hole symmetry argument which identifies
the compressibility κ = dρ/dμ of the AHM with the uniform
magnetic susceptibility χ = dM/dB of the RHM, which is
known to be nonzero at zero external field; thus, as noted
above, the AHM has finite compressibility at integer filling,
and there is no Mott plateau at half-filling.

This true one dimensionality of the ρ(i) = 1 ring makes the
formation of long-range CDW order in the AHM much less
robust than the antiferromagnetic order which can occur on
the quasi-two-dimensional Mott annulus of integer filling that
occurs in the RHM.

A related difference to the RHM is seen in the kinetic
energy, which shows a maximum at half-filling in Fig. 1,
where in the RHM the Mott phase would lead to localization
and a minimum of the kinetic energy. This behavior is best
understood by applying the asymmetric PH transformation.
The corresponding RHM is uniformly half-filled and subject
to a perpendicular Zeeman field Bi that varies radially and
goes through zero at those sites i that had ρ(i) = 1 in the
original, attractive model. Away from the B = 0 region, the
system gets increasingly spin polarized and thereby makes
Pauli exclusion more effective in hindering fermion mobility.

0

1

2

0 5 10 15 20

|i|

ρ(i)
t(i)

D(i)

FIG. 1. (Color online) Fermion density ρ, kinetic energy t , and
double occupancy D as a function of distance |i | from the trap center,
with N = 564 particles, U = 6, Vtrap = 0.0097, and μ = 0.8 at β =
9. The solid line shows the LDA result; in this case, near perfect
agreement is found between the true trapped system and the LDA.
Note that, in contrast to the RHM, there is no plateau at half-filling
(marked by the vertical line), which corresponds to the absence of a
Mott gap in the homogeneous model. Error bars are smaller than the
symbols.

One therefore expects a maximum in both t(i) and D(i) when
the site i belongs to the Bi = 0 region. As these quantities
are unchanged by the PH transformation, this last statement
translates verbatim to the AHM.

Next, Fig. 2 shows the near neighbor cpair(i,(
1
0 )) and next-

near neighbor cpair(i,(
1
1 )) s-wave pairing correlators both in the

LDA and the 30 × 30 system. In the LDA, both functions dip
at r = √

μ/Vtrap, where the local density ρ(i) = 1, as do the
corresponding farthest-neighbor correlators. Figure 3 shows
the density correlators ccharge(i,( 1

0 )) and |ccharge(i,( 1
1 ))| which

in the LDA peak as the system crosses through commensurate
filling.

The dip (peak) in the pairing (CDW) correlation functions
observed in the LDA may be understood from the CDW-
pairing degeneracy that exists precisely at half-filling, and
the corresponding suppression of the finite-T pairing order
that exists away from half-filling. While the LDA compares
favorably with the ab initio calculation across most of the
lattice, the dip (peak) in the s-wave pairing (CDW) when the
ρ(i) = 1 ring is crossed is conspicuously absent in the true
trapped system.

It is useful to compare this behavior with the RHM, where
the physics of commensurate filling (ρ = 1) can be inferred
correctly, for the most part, from the LDA because of the
presence of an annulus of finite thickness which “protects”
the Mott region. By contrast, in the AHM, there is no such
protection; the half-filled ring is truly one- dimensional, and
the physics of commensurate filling is essentially absent in the
trap.
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FIG. 2. (Color online) Near-neighbor [cpair(i,(
1
0 )) ] and next-near

neighbor [cpair(i,(
1
1 )) ] s-wave pair correlations as a function of

distance |i | from the trap center, with N = 564 particles, U = 6,
Vtrap = 0.0097, and μ = 0.8 at β = 9. The solid lines show the
LDA result; in this case, a striking failure of the LDA is seen
around half-filling (marked by the vertical line). Due to CDW/s-wave
degeneracy at half-filling in the homogeneous model, the LDA
predicts superfluidity only sufficiently far from that point, while in
the trapped system the superfluid phase may penetrate the half-filled
ring. Error bars have been suppressed to avoid clutter, but the spread
of the data points gives an indication of the uncertainties, which result
from large statistical fluctuations observed at low T (see text).

Once again, a deeper understanding can be reached by
applying the PH transformation: the B = 0 region of the
corresponding RHM divides, and is coupled to, regions where
the spins are tilted out of the xy plane in opposite directions.
Spins in the B = 0 region can then lower the system’s energy
by aligning with neighboring spins on the xy plane and
therefore breaking the local SU(2) symmetry characteristic of
the Hubbard model in the absence of an external field. In the
original language of the AHM this implies that, at half-filling,
one should expect a reduction of the CDW correlation, an
increase in the pairing correlations, and a breaking of the
CDW-pairing degeneracy.

For optical-lattice experiments that aim to emulate the
Hubbard model, our findings indicate that the physics of the
half-filled AHM will be inaccessible in any experimental setup
that leads to a confining potential (μ − Vtrap|i |2) as in Eq. (1).
It has recently been suggested34 to simulate the AHM on an
optical lattice, and then utilize the PH transformation, Eq. (5),
to draw conclusions about the repulsive case. However, this
proposal appears to be challenging, since the effective absence
of the half-filled case in the confined AHM means that the
physics of the RHM at zero Zeeman field will be inaccessible.

Both problems outlined above could be solved by the
recently suggested “off-diagonal” confinement (ODC),35 if
realized, since particle-hole symmetry indicates that the
inhomogeneous lattice can be made uniformly half-filled
under ODC. On the other hand, in the conventional “diagonal
confinement,” observing a finite-temperature transition to a

0.0
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0.4
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c c
h
a
rg

e

|i|

ccharge (i, ( 1
0 ))

−ccharge (i, ( 1
1 ))

FIG. 3. (Color online) Near neighbor [cpair(i,(
1
0 )) ] and next-near

neighbor [cpair(i,(
1
1 )), with the sign inverted for clarity] CDW

correlations as a function of distance |i | from the trap center, with
N = 564 particles, U = 6, Vtrap = 0.0097, and μ = 0.8 at β = 9.
The solid lines show the LDA result. As with the pair correlation, the
LDA fails around half-filling (marked by the vertical line), where it
predicts enhanced CDW correlations. Error bars are smaller than the
symbols.

superconducting phase in confined systems becomes much
more likely when the CDW region only occupies such a limited
spatial region, as discussed in detail in the following section.

IV. FINITE-SIZE EXTRAPOLATION

We now turn to the interesting issue of the finite-T phase
transition in the confined AHM. In general we may ask, when
a trapping potential is added to a model that undergoes, e.g.,
a KT transition in the homogeneous case, how is the nature
of that phase transition altered by the trap? In the case of
the classical XY model, it has been shown36 that the KT
transition of the homogeneous model is preserved in many
respects in the trapped case. In this section, we present a
finite-size extrapolation (FSE) to address the same question
for the AHM.

True phase transitions of course can occur only in the
thermodynamic limit of infinite system size. In a translation-
ally invariant system, the correct way to perform this limit is
familiar and almost trivial: the global density ρ = N/L2 is kept
constant. In the presence of a trap, the correct generalization
is to keep the “characteristic density” ρ̃ := N/
2 constant.37

Here 
 = √
t/Vtrap is the natural length scale in the problem,

formed by combining the kinetic energy t and the trap
curvature Vtrap. In the finite-size analysis described below, we
have used μ = 0.73 and kept the total chemical potential at the
edge of the lattice constant at μ + [(L + 1)/2]2 Vtrap = 3.72.
This leads to 
 ∝ L36,38 and therefore ρ̃ ∝ ρ, with ρ̃ � 6.5
and ρ � 0.5.

Of course, since only finite system sizes are accessible
numerically, one must invoke a procedure to infer behavior
in the thermodynamic limit from finite lattices. Here, we
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FIG. 4. (Color online) The s-wave structure factor PS for systems
of different linear size L with U = 6 as a function of inverse
temperature β. At low temperatures (β � 7), the curves flatten off
to values determined by the system size, indicating a divergent
correlation length.

follow the finite-size scaling (FSS) procedure discussed in
Ref. 33. The generalization of FSS in the presence of the
trapping potential has been called trap-size scaling (TSS);38

we note that TSS may be expressed as keeping ρ̃ constant and
proceeding with the FSS analysis as usual.

In this approach, the pair structure factor PS of Eq. (3) is
obtained for different lattice sizes and temperatures (plotted in
Fig. 4). We see that at high temperatures (β � 4), when the
correlation length is short, PS is independent of the system
size. At lower temperatures (β � 4), the curves begin to
separate as the correlation length becomes large compared
to the system sizes. Finally, for very low temperatures PS

approaches a constant depending on the system size. This
behavior is expected for KT and second-order transitions
where observables stop evolving with temperature when the
correlation length ξ exceeds L.

Unfortunately, the full FSS procedure of Ref. 33 is defeated
in the case of the confined AHM because of excessive
statistical fluctuations in the DQMC estimator for cpair. These
large fluctuations are manifest in, for example, the very large
error bars in two of the near-neighbor pair correlators of
Fig. 2. However, a comparison of results on lattice sizes
12,14, . . . ,24 at temperatures 1 � β � 16 provides evidence
that the KT transition is indeed preserved in the trap. The
approach hinges on the critical scaling of the structure factor
in the low-temperature phase; the expected KT form is

PS ∼ L2−η(T ). (6)

The critical exponent η for a KT transition in a homogeneous
system is known to vary with temperature between η(T =
0) = 0 and η(T = Tc) = 1

4 .39 In the trapped system, this issue
is complicated by the varying filling. Arguing within the LDA,
since the filling varies in the lattice, so does Tc; but η must be
a function of T/Tc rather than T itself, therefore η should vary

20

12 14 16 18 20 22 24

P
S

[s
hi

ft
ed

]

L

FIG. 5. (Color online) The s-wave structure factor PS as a
function of linear lattice size L for U = 6 at various low temperatures
(top to bottom: β = 1

T
= 16,15, . . . ,10) on a doubly logarithmic

scale. A vertical shift has been applied to separate the curves from
each other. A linear dependence on the doubly logarithmic scale
(i.e., the structure factor varies as a power of the system size) is the
expected behavior in the low temperature phase of a KT transition.

across the system along with the filling. We must therefore ask
whether an effective exponent η̃ exists such that Eq. (6) holds
for the system as a whole.

To address this question, we plot log PS as a function
of log L for several low temperatures, β � 10, in Fig. 5.
A straight line with slope 2 − η̃ in the doubly logarithmic

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

0.06 0.08 0.10 0.12 0.14 0.16

η̃

T

FIG. 6. The effective critical exponent η̃ defined below Eq. (6),
as obtained from nonlinear least-squares fits of the data from Fig. 4
to the functional form PS(L; η̃) ∝ L2−η̃. The horizontal lines indicate
the region 0 � η̃ � 1

4 , expected for the low-temperature phase from
the homogeneous case. Although the level of statistical noise is
significant across all temperatures T , the exponent is consistent with
values in this range for low temperatures.
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plot indicates that the scaling relation, Eq. (6), holds for the
whole system with an effective exponent η̃. Indeed, within
the statistical uncertainties, we find good agreement with this
expected linear form.

We have used non-linear least-squares fits to estimate η̃

at temperatures β � 6.6. Figure 6 shows the results of all
fits. Even though there is considerable statistical noise in
this plot, relevant features are seen. Most importantly, η̃ is
consistent with values in the range 0 � η̃ � 1

4 in the whole
low temperature range depicted in 6, as expected from the
KT transition in the homogeneous case. The fitted value of
η̃ grows beyond 1/4 at T � 0.14. Around a temperature of
T � 0.1, the fluctuations are especially prominent, which may
also be interpreted as a signature of the phase transition. Thus,
we may estimate the critical temperature of the system as
Tc � 0.1–0.15.

V. CONCLUSIONS

In this paper, the attractive Hubbard model in a harmonic
confining potential was studied, especially with regards to
superfluidity at low temperatures. Results from the LDA were
compared to calculations within the true trapped system.

While the LDA is valid for local observables in most cases,
we find qualitatively wrong predictions for the s-wave pairing
and CDW correlation functions around the ring of half-filling,

where the LDA predicts a dip and a peak, respectively, which
are absent when the trapped system is treated ab initio. This
is linked to the relationship between the pairing and CDW
correlations at half-filling, and to the density profile in the trap,
where the Mott plateau exhibited by the repulsive Hubbard
model is absent. Consequently, the physics of the half-filled
case is not represented anywhere in the trap. On the other hand,
the suppression of the CDW correlations will make it easier to
observe a transition to a superfluid phase at finite temperature.

A finite-size extrapolation, where systems of different sizes
but at the same characteristic density ρ̃ are compared, provides
evidence that the Kosterlitz-Thouless transition to a superfluid
phase of the homogeneous attractive Hubbard model persists
in the trap, with a critical temperature of Tc � 0.1–0.15.
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