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1. Introductory remarks

Over the past two decades lattice methods have made
considerable progress in our understanding of non-perturbative
QCD, and now give rise to reliable quantitative results. However,
one of the areas where progress is painfully slow is the analysis
of QCD at finite density. The introduction of a chemical potential
turns the fermion determinant into a complex number, such that
it cannot be used as a weight factor in a Monte Carlo analysis—an
obstacle known as the complex phase problem. For true progress
with QCD thermodynamics on the lattice new algorithmic concepts
will be necessary. Often such new ideas are first developed and
tested in simpler models before becoming applicable to the full
theory.

The worm algorithm [1] is a conceptually new approach
which has already been shown to be useful in some QCD related
applications, in particular in strongly coupled lattice QCD [2,3]
and in scalar [4] or low dimensional lattice field theories [5].
In this paper we extend the range of applications of worm
algorithms to QCD related problems, and show that a worm
algorithm can be used to simulate the 3-state Potts model in
three dimensions with a center symmetry breaking term and
a chemical potential, which in its standard representation has
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a complex phase problem. This model has been discussed as
an effective theory for parts of the QCD phase diagram [6-8].
Numerical studies with various techniques for vanishing [9,10] and
non-vanishing chemical potential [8,11-13] may be found in the
literature. Recently a systematical analysis of the phase diagram
as function of temperature and chemical potential was presented
and its implications for QCD were discussed [14]. In this work we
discuss in detail the worm algorithms used in [14] and assess their
performance.

The 3-state Potts model with magnetic field x and chemical
potential u in d dimensions is described by the Hamiltonian

d
HIP] = — Z(r Z[P(X)P(x + 0+ c.c.]

X v=1
+nP ) +nP(X)*>, (1)

where we use the variables n and 7, which are related to the
strength « of the external field and the chemical potential p via

n=xe', np=rke (2)

The first sum in (1) is over all sites x of a d-dimensional (hyper-)
cubic lattice with periodic boundary conditions and a total of V
lattice points. The second sum is over all directionsv = 1, 2, ..., d,
where b denotes the unit vector in direction v. The spin variables
P(x) are complex phases with three different values, P(x) € Z3 =
{1, e27/3 e=127/3} The coupling parameters 7, « and y are real and
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non-negative. The partition function of the model is given by Z =
> € °'"), where the sum runs over all possible configurations of
the phases P(x) € Zs.

In the context of an effective theory for QCD thermodynamics
one considers the d = 3 model and the spin variables P(x) are
interpreted as static quark sources at a spatial position x (local
Polyakov loops). A vanishing expectation value P = V! O, P(x)),
which we here will often refer to as the magnetization P, signals
confinement of quarks, while P # 0 corresponds to deconfined
quarks. The parameter t is a monotonically increasing function of
the QCD temperature. k is proportional to the number of flavors
and decreases with increasing quark mass. The value x = 0 then
corresponds to pure gluodynamics. w has the interpretation of the
quark chemical potential in units of the inverse temperature.

For vanishing external field, k = 0 (i.e., n = 7 = 0), the 3-state
Potts model in three dimensions is known to have a first-order
transition at t = 0.183522(3) [10,15]. For small external field
and vanishing chemical potential (i.e.,, n = 1 = k) the first-order
transition persists, giving rise to a short first-order line which ends
in a critical endpoint at (7, k) = (0.183127(7), 0.00026(3)) [10].
The case of non-vanishing chemical potential has been analyzed
with techniques based on the Swendsen-Wang cluster algorithm
using improved estimator techniques in [8] and reweighting
in [12]. Within the flux representation [7] also local Metropolis
updates were used [8,11].It has been demonstrated that turning on
the chemical potential mildens the transition and shifts the critical
endpoint towards smaller values of «.

In this article we show that in the flux representation [7]
the model is accessible also with suitably constructed worm
algorithms. We discuss two different types of generalized worm
algorithms: Type-I: A simple generalization of the conventional
Prokof’ev-Svistunov worm [1] with steps where monomers are
inserted, combined with a random hop to a lattice site with another
monomer insertion. Type-II: Here the worms are open strings with
monomers at their endpoints (contrary to the Type-I worms, which
are closed but with the possibility of intermediate hops).

The two algorithms are compared and evaluated using bulk
observables: the magnetization P, the internal energy U, the
susceptibility xp and the heat capacity C.

2. Flux representation

In this section we briefly review the flux representation [7] that
we use for the two worm algorithms to set the notation and to
discuss the flux representation of the observables. For the nearest
neighbor terms of (1) we use the ansatz

H b,y
e TIPOPHD)* +ec] _ ¢ Z Blbxvl (P(X)P(X +D)* ) o (3)
by,y=—1
In this expression the term living on the link (x, v) is written as a
sum over a dimer variable by, € {—1, 0, +1}. A straightforward

calculation gives the constants C and B,
2T -7 2T —T
et + 2e et —e
C=—"—" =——. (4)
3 et + 2e "

For the magnetic field terms, which live on a single site x, we use a
similar ansatz,

+1
ePOHTIPT = N M P, (5)

sx=—1

which expresses the lhs. as a sum over a monomer variable s, €
{—1, 0, +1} attached to the site x. Again one easily works out the
monomer weights M fors = —1, 0, 4+1 and obtains

1 _ - 3 2
M= 2 |:e'7+77 +2e”MD/2 cos ((n —ﬁ)g - s:)i| . (6)

The weights M; turn out to be non-negative for all values of n
and 7.

With the expressions (3) and (5) the partition sum assumes the
form (V again denotes the total number of lattice points)

Z = Cdv Z Z W[b, 5] (1_[ Z P(x)zu[bxw_bxf:,uJ‘Hx) . (7)

{b} {s} X Pk

The first two sums in (7) run over all configurations of the dimer
variables by , and of the monomer variables s,. We have introduced
the weight factor

Wb, s] = (HBb“) (]:[ Msx) . (8)

X,V

The summation over the phases P(x) can now be performed in
closed form. Using that the sum over the roots of unity vanishes,
one finds (n is an integer),

ZP” =3T(n) withT(n) = 8, mods3.0, (9)
P

where we introduced the triality function T (n) which equals 1 ifn
is a multiple of 3 and vanishes otherwise. The partition sum in its
final form reads

z=@3cY" Y Y wibsI[]T (Z[bx,u — by—i0] +sx) . (10)

b} {s}

In (10), the Potts model is represented in terms of the dimer
variables b, € {—1, 0, 41}, which live on the links (x, v) of the
lattice, and the monomer variables s, € {—1, 0, +1}, attached to
the sites x. Each configuration of dimers and monomers comes with
areal and non-negative weight Wb, s], as given in (8), and thus the
complex phase problem is solved. The weight consists of a factor B
for every non-vanishing dimer, and a monomer factor M;, for each
site x, according to the monomer variable s, at that site.

The configurations of dimers and monomers must obey the
constraint given by the second factor in (10). This factor forces the
total flux of dimers and monomers at each site x to be a multiple
of 3.

In Fig. 1 we show (for the 2-dimensional case) a few admissible
flux configurations at individual sites: dimers are represented by
arrows in the horizontal plane and monomers by arrows on the
vertical axis. If an arrow points towards a site (away from the site)
it contributes with +1 (—1) to the total flux at that site. Trivial
dimers, by, = 0,and trivial monomers, sy = 0, do not contribute to
the constraint and thus need not be represented in the illustration
of admissible fluxes.

In our tests of the worm algorithms we use the bulk
observables: internal energy U, the magnetization P, i.e. the
expectation value of the averaged spin variable P = V! > (PX)),
the heat capacity C and the susceptibility xp. These quantities may
be obtained as suitable derivatives of InZ. For the evaluation of
these derivatives it is useful to note the following relations for
derivatives of the monomer weights M;:

oM oM_ oM oM
T My, = =M,
an an an an (an
oM_1 oMy
= ———_ = M-H«
an on

Exploiting these relations one obtains for the expectation value of
the spatially averaged spin the following representation in terms
of monomers

10 1 < My M_

10 = L Mo Mo M (12)
Vv an VAN YT VAR VI

P
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where $,; denotes the number of sites x, where the monomer
variables have the value s, = +1, etcetera.
In a similar way one obtains for the internal energy

U = (H) 9 A Y
= =|—-T——N———nN—|In
o Tan Tox
= —2dV1B — <§B§+ 5+11V[+1 + 50M0 + 5,1M71>, (13)

with 8 denoting the number of links (x, v), where the dimer
variables are non-zero, by, # 0. The new numerical constants in
this expression are

E _ 97 1\71 _ T}Mo + ﬁM_]
= 463‘[ + 1 e_3r 5 +1 — M+1 )
_ My + 1Mo

~ M_ nM ~
M:n 1+7 +1, vt

0 (14)

Mo - M_4
Using equivalent steps also the heat capacity C and the suscep-
tibility xp can be expressed in terms of the monomer and dimer
numbers and their fluctuations. For the evaluation of spin corre-
lators one may use locally varying weights n and 7 as generating
functionals. The spin correlators are then related to correlators of
monomers.

3. Worm algorithms

In a worm algorithm [1], the constraint of flux conservation (9)
is temporarily relaxed during a Monte Carlo move. One unit of flux
is inserted at some lattice site and then moved through the lattice
by local steps, until the insertion is healed again, either by coming
back to the original site, or by a change of the local monomer
number. The individual local steps are performed with Metropolis
update probabilities. Each complete worm makes up one update
step in the model with constraint (9) which is to be simulated.

As outlined in the introduction, we use two different types of
worm algorithms. Type-I: The worms are closed, and in addition
to the usual local worm propagation, there are random hops with
insertion of monomers. Type-II: The worms are open strings on the
lattice with monomers at the endpoints.

3.1. Type-I: closed worm algorithm

Each worm is generated using four different moves. We
illustrate them in Fig. 2 for the simplest case of an initially empty
lattice, i.e., all dimer- and monomer variables are set to 0 in the
beginning. The worm starts at a random position of the lattice (1).
It may decide to insert dimers and move to the neighboring site (2)
but also monomers can be inserted (3). The insertion of a monomer
is followed by a sequence of attempts to insert another monomer
at arandomly chosen site, which will succeed (3) with a probability
depending on the weights M;. These steps are continued until the
worm closes (4). The acceptance of each step is governed by a
Metropolis decision.

The subsequent pseudo-code describes the algorithm for the
general case of d dimensions (for the numerical tests discussed
later we set d = 3). By xo we denote the starting point of the
worm and x is the current position of its head. worm_sign is a
variable that determines whether the worm raises or lowers the

Fig. 2. Example of a Type-I closed worm on an initially empty 2-D lattice.

flux. insert_monomer_flag is alogical variable controlling the status
of the worm. By x @ y we denote addition modulo 3, which is
the usual addition operation except in the casesx = y = 1 and
x =y = —1 where we define+1® +1 = —1and -1 —1 =
+1. Finally rand () is a random number generator for uniformly
distributed real numbers in the interval [0, 1).

Pseudocode for Type-I closed worms:

select a lattice site X, randomly
X <— Xo

select worm_sign € {—1, +1} randomly
insert_monomer _flag <— false

repeat until worm is complete:
if insert_monomer_flag is true then
select a lattice site X' randomly
S «— sy @ (—worm_sign)
if rand()~§ Ms/Ms, then
Sy <— S
X «— X
insert_monomer_flag <— false
end if
else
select v e {0,%1,+2, ... =d} randomly
if v =0 then
S «— s, ® worm_sign
if rand() < M;/M,, then

Sy <— S
insert _monomer _flag <— true
end if

else
b <— by, ® (sgn(v) x worm_sign)
if rand() < BI=IPxvl then
byy <— b
X <— X+7D
end if
end if
end if

if x =Xxp and insert_monomer_flag is false then
worm is complete
endif
end repeat until worm is complete

It is straightforward to show detailed balance using the Boltzmann
weight Wb, s] given in (8), and that the algorithm is ergodic.
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Fig. 3. Example of a Type-Il open worm on an initially empty 2-dimensional lattice.
See the text for its discussion.

3.2. Type-II: open worm algorithm

We also employed a second variant of the algorithm, which we
refer to as Type-Il open worms. In this case, each worm is generated
using three moves, which we again illustrate for an initially empty
lattice (Fig. 3): The worm tries to start at a random position of the
lattice by inserting a monomer (1). It then may decide to insert
dimers or monomers. If a dimer is inserted the worm moves to
the neighboring site (2). If a monomer is inserted, the worm is
complete and terminates (3). Again the acceptance of the moves
is decided with a Metropolis step.

We stress that the Type-Il open worm will not work in the
case of a vanishing external magnetic field, i.e., for « = 0. In that
case no monomers appear and the Type-Il worm cannot start. For
small « the Type-Il open worm will have a very small probability
for starting, since the monomer weights are linear in « (for small
values of «). For larger values of « there is no starting problem
of the Type-Il worms (see also Section 4.2). For k # 0 it is
straightforward to show detailed balance and ergodicity for Type-II
worms, and we found that they are even simpler to implement
than the closed worms.

4. Numerical assessment of the worms

In this section we show the results of our tests and performance
analysis for the two generalized worm algorithms. For a detailed
discussion of the physics results obtained in the simulations of
the generalized Potts model we refer the reader to [14]. Here we
include only a figure of the phase diagram to allow the reader to
locate the parameter values of the simulations discussed in this
section in the phase diagram. In Fig. 4 we show the phase diagram
in the T — u plane obtained from the position of the maxima of
xp for three values of . The dashed curves at the bottom are the
results of a perturbative expansion in t and the horizontal line
marks the critical value of 7 for the ¥k = 0 case. To the left of the
phase lines the Polyakov loop is small (confinement), while it is
close to 1 to the right of the phase lines (deconfined phase). The
transitions are of a crossover nature.

4.1. Validity of the algorithms and the flux-based observables

As a first test we compare the results from the two worm algo-
rithms with the results from an exact evaluationona small 2 x 2 x 3
lattice using the original spin formulation of the model. We con-
sider the observables U, C, P and xp normalized by the volume. In
Fig. 5 we show these observables as a function of t for k = 0.001
and p = 6.0. The curves represent the results from the exact eval-
uation, while for the data from the worm algorithms symbols are
used. It is obvious, that the numbers from the exact evaluation and
from the worm algorithms agree very well. This not only estab-
lishes the validity of the worm algorithms, but also of the mapping
of the physical observables onto the flux representation. The test
on the small volume was repeated for different values of the pa-
rameters 7, k and p and we always found excellent agreement of
the worm results with the exact evaluation of the observables.

In addition to the comparison to exact results on small volumes
we performed also a comparison with a conventional Metropolis

O0F T T T T T T T
! v x=0.001 |--]
T e k=0.010
I A x=0.100
0.15 -
010 | Y H ﬁ ]
3 ® \
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X \ \
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Fig. 4. Phase diagram [14] as obtained from the maxima of the susceptibility of
P. We show results for three values of «. The dashed curves at the bottom are the
results of a perturbative expansion in v and the horizontal line marks the critical
value of 7 for the k = 0 case.
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Fig.5. Comparison of the exact result (full curves)on a2 x 2 x 3 lattice with the two
worm algorithms (symbols). We show the results for U, C, P and yxp as a function of
T using k = 0.001 and i = 6.0. Note that the data points from the two algorithms
agree almost perfectly, such that the corresponding symbols essentially fall on top
of each other.

calculation in the spin representation on larger volumes. This
comparison is of course limited to vanishing chemical potential,
i = 0, where the complex phase problem is absent also in the
spin representation and the conventional Metropolis approach is
possible. In Fig. 6 we compare the results for the internal energy
U and the heat capacity C as a function of t calculated with the
three algorithms: Conventional Metropolis (red circles), closed
worm (blue upward pointing triangles) and open worm (green
downward pointing triangles) for k = 0.01and u = O on a 163
lattice for values of T near the crossover. The Metropolis simulation
uses 108 sweeps of local Metropolis steps for equilibration and
10° measurements separated by 20 sweeps for decorrelation. For
both worm algorithms we used 10® worms for equilibration and
10 measurements. For the Type-I closed worm we separated two
measurements by Ngeco = 20 worms for decorrelation, while for
the Type-II open worms 5000 worms were used for decorrelation.
The results from the three algorithms fall on top of each other. The
same tests were conducted at other values of the parameters and
also for P and yp. Furthermore, for u > 0, where simulations with
the conventional spin-based Metropolis algorithm are not possible,
we performed a comparison among the two worm algorithms, and
also in this case found excellent agreement. We conclude that the
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Fig. 7. Time series for 8/V and §/V at T = 0.1782, k = 0.005 and ;= = 0 on a 8° lattice, generated with Type-I worms. The Monte Carlo time on the horizontal axis is

measured in units of Ngeco = 20 worms.

two worm algorithms are valid and that the representation of the
observables in terms of fluxes was implemented correctly.

4.2. Time series

In this subsection we now study performance aspects of the
two worm algorithms. We begin our assessment with analyzing
the time series of measurements of the total number 8 of non-
zero dimer variables and the number § of non-zero monomers.
As shown at the end of Section 2, the physical observables can be
constructed from 8B and 4 and their moments. In Fig. 7 we show
time series from Type-I worms for 8/V (top plot) and for §/V
(bottom plot) for the parameters t 0.1782, k = 0.005, u =
0.0 and a volume of 83 (time series for Type-Il worms behave
similarly). Between two measurements we used Ngeco, = 20 worms
for decorrelation, so the Metropolis time on the horizontal axis is
measured in units of 20 worms. We do not observe structures on
scales larger than several hundred worms and as a first impression
conclude that the Type-I worms lead to reasonably quick sampling.
The sampling becomes better for larger values of « or u.

There are, however, regions in the space of couplings where one
finds that the flux representation and worms are not the optimal
approach. In general this is the case for very small values of «
(typically for k of 0(10~%)), where the monomer weights are small
(inleading order they are linear in « ), and thus it is hard to generate
monomers. This is illustrated in Fig. 8, where we show the same
time series as in Fig. 7, but now at x = 0.0002, x = Oand 7

0.183, again with Ngeco, = 20 worms for decorrelation. Although
the time series for 8 /V still looks reasonable, the time series for
4 /V shows that monomers are generated only very rarely and very
high statistics would be needed to obtain reliable results. We stress
that this is a property of the flux representation: As mentioned,
the monomer weights are very small at small «, so monomers
are indeed expected to be very rare and the flux representation
is not the optimal choice for very small «. This difficulty could
be overcome by reweighting the sector of phase space with small
monomer numbers to obtain a higher weight and thus higher
frequency in the Monte Carlo. They could then be weighted back
in order to compute expectation values. In the present study we
did not explore such a reweighting strategy. We also note that for
small ¥ the complex phase problem is very mild and reweighting
techniques were used to successfully simulate the system with
the conventional spin representation [8,12] in that region of the
parameter space also at small p.

4.3. Characteristic quantities

Let us now come to a quantitative comparison of the Type-I
closed worms and Type-II open worms. For a sensible comparison
one has to consider the actual changes done by the worms: A
Type-II open worm inserts two monomers at its endpoints and
connects it with dimers (one segment), while a Type-I closed worm
may consist of several segments of dimer strings connected by
large hops between monomers (it may also consist of only dimer
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Table 1

Characteristic quantities for Type-I closed worms (see the text for their definitions).
All the simulations use 10° worms for equilibration and 107 measurements
separated by Ngeco = 5 worms for decorrelation. The error is usually smaller than
the last digit we show.

Table 2

Characteristic quantities for Type-IIl open worms (see the text for their definition).
All the simulations use 10° worms for equilibration and 107 measurements
separated by Ngeco, = 500 worms for decorrelation. The error is usually smaller
than the last digit we show.

Parameters Vv r Nos/V D/V Cs Parameters Vv r D Cs
Set A: 63 0.166 0.122 0.383 3.81 Set A: 63 0.268 293 3.78
T = 0.100, 83 0.166 0.122 0.380 3.80 T = 0.100, 83 0.268 293 3.78
k = 0.001, 163 0.166 0.122 0.378 3.80 k = 0.001, 163 0.268 293 3.78
n=>59 323 0.166 0.122 0.377 3.80 n=>59 323 0.268 293 3.78
T =0.181, 8 0.200 2.29e—4 0.221 351 T =0.181, g3 0.0015 163 717
« = 0.001, 16? 0.190 1.82e—4 0.066 481 « = 0.001, 163 0.0016 195 6.42
w=08 32 0.188 1.44e—4 0.031 6.32 ©=08 323 0.0015 179 6.77
Set C: 6° 0.129 0.445 0.212 3.89 ot C: & 0,625 0.445 385
T = 0.025, 83 0.129 0.444 0.212 3.89 et C 5 y y :
_ 3 T = 0.025, 8 0.626 0.445 3.85
x = 0.005, 16 0.129 0.444 0.211 3.88 3
w=52 323 0.129 0.444 0212 389 k = 0.005, 16 0.625 0.445 3.85
’ ’ ’ ’ ’ n=>52 323 0.626 0.445 3.85
Set D: 63 0.173 7.59e—4 0.126 3.99
T = 0.170, 83 0.170 5.66e—4 0.059 4.64 Set D: 6° 0.0059 30.1 8.57
k = 0.005, 163 0.169 4.18e—4 0.017 7.25 T = 0.170, 83 0.0058 29.2 8.77
n=02 323 0.169 4.03e—4 0.012 8.73 k = 0.005, 16§ 0.0058 283 8.98
Set E: 6? 0.164 0013 0.197 461 n=02 32 0.0058 283 8.98
T = 0.150, 83 0.164 0.012 0.178 4.70 Set E: 63 0.0482 125 470
k = 0.010, 163 0.164 0.012 0.166 4.77 T = 0.150, g3 0.0482 12.5 470
n=20 323 0.164 0.012 0.164 478 x = 0.010, 163 0.0482 12.5 470
nw=20 323 0.0482 12.5 470

hops without large hops, i.e., only one closed segment). We first
look at some characteristic quantities in order to describe the
behavior of the worms in different regions of parameter space.
By nos we denote the average number of open segments in Type-I
worms, i.e., segments with monomer hops at their endpoints (if a
Type-I worm closes without monomer insertions 1, is zero). By
D we denote the average number of dimer steps in a Type-I or
Type-Il worm. Another interesting quantity for the comparison of
the two worms is the ratio r of the number of successful worm
starts divided by the number of all start attempts. Depending on
the parameters, here one expects a drastic difference between the
worms, since the open worms can start only with the insertion of
a monomer. Finally, for the comparison of the computational cost
of the two algorithms we define the cost ratio c; for the Type-I and
Type-II worms as the ratio of the total number of attempted steps
(dimer, monomer and start attempts) to the number of accepted
steps.

In Table 1 we collect the data for Type-I closed worms, and in
Table 2 for Type-II worms. The analysis was done for five different

sets of parameters (first column) and for four volumes (second
column). Let us begin with the comparison of the ratio r (number of
successful worm starts divided by the number of all start attempts).
For Type-I closed worms the starting probability is similar for all
parameter sets (ranging between 0.129 and 0.209). Since here the
chance for starting with a dimer insertion is 6/7, the ratio goes
down slightly when dimers are more costly, i.e., when t is small,
or when the system is monomer dominated (x and/or w large). For
the Type-II open worms, r shows a much larger variation: Here
the worm must start with the insertion of a monomer, and for
some parameter sets (sets B, D and E) these are scarce, such that
for the Type-Il worms many start attempts fail. On the other hand,
for parameters where monomers are abundant (sets A and C), we
observe a very high rate of successful starts.

For Type-I closed worms the abundance of monomers is also
reflected in the average number nys of open segments: It is small for
the same parameter sets (sets B, D and E) where the starting ratio
r of the Type-Il worms is small, i.e., for regions of parameter space
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with few monomers. Concerning the dependence on the volume
V, we find that nys grows linearly with the volume, i.e.,, nos = cV
perfectly describes the data, where c is a constant that depends on
the parameters 7, « and u.

The behavior of the average number D of dimer steps is
interesting. For Type-Il open worms we find that D varies only
very little with the volume and is correlated with the abundance
of monomers: Since monomers are needed to terminate Type-II
worms, parameter values where monomers are scarce (sets B, D
and E) will lead to longer worms, i.e., increase D. For Type-I closed
worms we find that D essentially grows linearly with the volume
for Sets A, C and E. For the sets B and D (those with very low density
of monomers) we find that D grows slower than linear. This is
correlated with a very small number ns of open segments for these
ensembles.

The cost ratio ¢, essentially reflects the behavior of r, n,s and
D: Whenever monomers are sufficiently abundant, the values of ¢,
are independent of the volume and are roughly equal for Type-I
and Type-II worms. Discrepancies are observed only for the sets
where monomers are scarce (sets B and D): In these cases the
closed Type-I worms have the advantage that they can run without
any monomer insertions at all, thus improving their cost ratio. This
advantage is, however, lost when the volume is larger and longer
dimer chains emerge. Then from time to time a monomer insertion
takes place and also Type-I worms then spend quite some time
with trying to insert another monomer necessary for continuation.
Thus for larger volumes the cost ratios c; of Type-I and Type-II
worms roughly agree also for sets B and D. From the assessment of
r, nes, D and ¢; we conclude that for these characteristic quantities
the two algorithms behave similarly, with the exception that the
closed Type-I worms are more flexible since they work also for
vanishing external magnetic fields.

4.4. Autocorrelation times

The relevant figure of merit for an algorithm is computational
effort for a fixed precision of results. We therefore analyze the
integrated autocorrelation time t¥. of the bulk observables X =
U, C, P and y,. Since the sizes of worms vary drastically between
the different cases, we need to normalize the autocorrelation
times. For this purpose we define one “sweep” as tg = 3V/D
worms, i.e., the average number of worms needed to visit every
link of the lattice as the (customary) unit for the integrated
autocorrelation times tX.. Obviously one may express 7, also in
terms of measurements as tgp = 3V /(D Ngeco) measurements.
In Tables 3 and 4 we give the autocorrelation times in units
of 7y. In order to obtain a measure of computational effort, the
results are multiplied by the cost ratio ¢, in other words we
show T = ¢; Tyeas/To, Where Tpegs Simply is the unnormalized
autocorrelation time in units of measurements. The statistical
errors of autocorrelation times were estimated by a jackknife
procedure and are between about 5 and 10%, depending on the
parameter values. This is sufficient for the subsequent comparison
of the two algorithms.

The autocorrelation times are almost independent of volume for
most parameter sets, reflecting the crossover or noncritical nature
of correlations. Even for set B, which is very close to the critical
value of 7 at k = 0, autocorrelation times of Type-I are small and
increase only very moderately with volume. Self-averaging within
a large volume can lead to the decreasing times (at high scale) for
the internal energy U for set B and Type-IL.

Comparing the autocorrelation times (Tables 3 and 4) shows
that Type-Il open worms outperform the Type-I closed worms (i.e.,
shorter autocorrelation times) for those sets where monomers are
abundant (sets A and C), while the Type-I worms perform better for
sets B, D, E, where monomers are scarce. The reason is that Type-II

Table 3

Type-I closed worms: Autocorrelation times of the bulk observables at different
parameters. We show the autocorrelation times T in units of 7o and multiplied by
the cost ratio s, as discussed in the text.

Parameters 1% T, 75, T, T
Set A: 6° 31 17 26 15
7 = 0.100, 83 31 17 27 14
x = 0.001, 163 31 17 26 14
nw=>59 323 32 18 27 15
Set B: 6° 83 30 19 15
7 =0.181, 83 99 35 23 18
k = 0.001, 163 151 72 78 21
nw=08 323 156 73 89 32
Set C: 6° 7.8 5.0 6.7 49
7 =0.025, 83 7.9 5.1 7.5 48
k = 0.005, 163 7.7 5.2 8.0 5.0
nw=>52 323 7.7 52 7.9 5.1
Set D: 6° 27 16 13 6.9
7 = 0.170, 83 25 13 13 6.1
k = 0.005, 163 32 14 11 5.9
w=02 323 54 28 11 6.2
Set E: 6° 48 18 51 20
7 = 0.150, 83 82 38 86 42
k = 0.010, 163 79 42 82 43
w=20 323 77 39 80 43
Table 4

Type-II open worms: Autocorrelation times of the bulk observables at different
parameters. We show the autocorrelation times 7 in units of 7o and multiplied by
the cost ratio cs, as discussed in the text. For cases marked with “>", only a lower
bound could be determined.

Parameters 1% o T5, ™, T
Set A: 6° 14 6.8 12 5.1

7 = 0.100, 83 15 7.2 13 5.0
x = 0.001, 16° 15 6.9 13 5.1
=59 323 14 7.0 11 49
Set B: 6° 35000 13000 1300 1200
7 =0.181, 83 31000 13000 7800 2700
x = 0.001, 16° >25000 15000 12000 3900
nw=08 323 >19000 >11000 >11000 >3100
Set C: 6° 1.2 0.53 1.1 0.47
7 = 0.025, 83 1.1 0.50 1.0 0.46
Kk = 0.005, 16° 1.2 0.53 1.1 0.47
=52 323 1.2 0.53 14 0.49
Set D: 6° 2000 990 180 80

7 = 0.170, 83 1400 740 210 100
Kk = 0.005, 16° 1200 580 230 100
w=02 323 940 540 220 85
Set E: 6> 240 120 240 120
7 = 0.150, 83 230 110 240 120
k = 0.010, 16° 230 120 240 110
=20 323 230 110 240 110

worms always start with the insertion of a monomer, while Type-I
worms insert monomers only with a probability 1/7. Thus Type-II
worms may have a larger portion of monomer insertions compared
to dimer steps, and thus do many monomer changes, which is
advantageous for Sets A and C. Vice versa, for the sets with few
monomers, the Type-I worms can do many dimers steps without
needing monomer insertions and thus perform better in this
situation. We remark that some of the disadvantage of the Type-I
worms for parameter sets where monomers are abundant could be
ameliorated by changing the probability for offering a monomer
change from 1/7 to some larger value. Remarkably, the relative
performance of the two worm types is roughly proportional tor/c;,
i.e. to the acceptance rates for attempted steps.



Y.D. Mercado et al. / Computer Physics Communications 183 (2012) 1920-1927 1927

5. Summary and discussion

In this article we presented in detail two worm algorithms
that were used in a recent QCD-inspired study of the 3-state
Potts model with external field and chemical potential in three
dimensions [14] and analyzed their performance. The algorithms
are based on a flux representation of the model which can
be obtained using high-temperature expansion techniques. The
nearest neighbor term leads to the conventional dimer-based
closed contours, while the magnetic terms allow violation of the
constraint through the insertion of monomers (similar structures
will appear whenever one considers spin systems that are coupled
to an external field). Furthermore, the chemical potential gives a
different weight to monomers and antimonomers. Thus the model
provides a rather general testbed for various algorithmic ideas
based on the worm concept [1].

We explored two types of generalized worm algorithms that
differ in their treatment of monomers. The Type-I closed worms
start with dimers or monomers and allow for dimer insertions or
the insertion of monomers, which are then followed by a random
hop to another position, where a second monomer is inserted.
These closed worms finish when the starting position is reached
again. On the other hand, the Type-Il open worms create chains
of dimers that start and end with the insertion of monomers.
It is important to note that the open worms are restricted to
simulations with non-vanishing external magnetic field.

It was carefully checked that the two worm algorithms produce
correct results, by comparison with an exact evaluation on small
volumes, a cross-check with a standard Metropolis simulation (at
vanishing chemical potential), and a systematic comparison of the
results from the two algorithms at various parameter values.

In order to evaluate the performance of the two algorithms
we first compared various characteristic quantities, namely the
starting probability r, the number of open segments 1,5 in Type-I
worms, the average number of dimer steps D of the worms,
and their cost ratio c;, We then presented the results of an
analysis of the autocorrelation times, suitably scaled to reflect
computational effort. The overall assessment shows that the Type-I
closed worms are more flexible: They can be used also at vanishing
external field and in general were found to perform better for
parameter sets where monomers are scarce. Type-II open worms
perform considerably better in monomer dominated regions of the
parameter space. However, we expect that changing the ratio of
monomer to dimer steps in Type-I closed worms would improve
the latter for situations where monomers are abundant.

The authors expect that generalizations of the worm concept
will see a lot of attention in the future: Matter fields (bosonic

and fermionic) give rise to closed loops of flux on a lattice, and
worm algorithms are a natural approach to update such a system.
Of course in more realistic models the structure of the fluxes is
more involved (see, e.g., the generalized effective Polyakov loop
model [16]) and new strategies need to be found. We expect that
the current paper is useful for such further developments.
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