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We investigate the electronic structure of SrMnO3 with density functional theory plus dynamical mean-field
theory (DMFT). Within this scheme the selection of the correlated subspace and the construction of the
corresponding Wannier functions is a crucial step. Due to the crystal-field splitting of the Mn-3d orbitals and their
separation from the O-2p bands, SrMnO3 is a material where on first sight a three-band d-only model should be
sufficient. However, in the present work we demonstrate that the resulting spectrum is considerably influenced
by the number of correlated orbitals and the number of bands included in the Wannier function construction. For
example, in a d-dp model we observe a splitting of the t2g lower Hubbard band into a more complex spectral
structure, not observable in d-only models. To illustrate these high-frequency differences we employ the recently
developed fork tensor product state (FTPS) impurity solver, as it provides the necessary spectral resolution on
the real-frequency axis. We find that the spectral structure of a five-band d-dp model is in good agreement with
PES and XAS experiments. Our results demonstrate that the FTPS solver is capable of performing full five-band
DMFT calculations directly on the real-frequency axis.
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I. INTRODUCTION

The combination of density functional theory (DFT) and
dynamical mean-field theory (DMFT) has become the work-
horse method for the modeling of strongly correlated mate-
rials [1–3]. For DMFT, a (multiorbital) Hubbard model is
constructed in a selected correlated subspace, which usually
describes the valence electrons of the transition-metal orbitals
in a material. An adequate basis for these localized orbitals
are projective Wannier functions [4,5]. In contrast to the
Bloch wave functions, these functions are localized in real
space, and therefore provide a natural basis to include local
interactions as they resemble atomic orbitals and decay with
increasing distance from the nuclei. However, the selection
of the correlated subspace itself and the Wannier function
construction are not uniquely defined.

In the present work, we use SrMnO3 to analyze the differ-
ences of some common models. This perovskite is an insulator
[6] with a nominal filling of three electrons in the Mn 3d shell.
There are various works concerning its electronic structure,
both on the experimental [7–12] as well as on the theoretical
side [13–16]. For the construction of the correlated subspace,
we explicitly identify the following meaningful cases: The
first is a three orbital model for the t2g states only. For the
second choice, usually denoted as d-dp model, the transition
metal 3d states and the oxygen 2p states are considered in the
Wannier function construction, but the Hubbard interaction
is only applied to the 3d states. The correlated subspace
is then affected by the lower-lying oxygen bands due to
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hybridizations. In both cases, the full 3d manifold can be
retained by including the eg orbitals in genuine five orbital
models.

To assess the consequences of the different low-energy
models, a good resolution of the spectral function on the real-
frequency axis is beneficial. Due to its exactness up to statistical
noise, continuous time quantum Monte Carlo (CTQMC) is
often used as a DMFT impurity solver [17–19]. However, when
using a CTQMC impurity solver, an analytic continuation is
necessary, which results in spectral functions with a severely
limited resolution at higher frequencies [20]. This can make
it difficult to judge the influence of the choices made for the
correlated subspace. In the present paper, we therefore employ
the real-frequency fork tensor product state (FTPS) solver [20].
This recently developed zero-temperature impurity solver was
previously applied to SrVO3, making it possible to reveal an
atomic multiplet structure in the upper Hubbard band [20]. This
observation of a distinct multiplet structure in a real-material
calculation is an important affirmation of the atom-centered
view promoted by DMFT.

The present work also serves as a deeper investigation of
the capabilities of the FTPS solver. We show that the FTPS
solver can be applied to d-dp models, leading to insight into the
interplay of the atomic physics of the transition metal impurity
and hybridization effects with the oxygen atoms as a natural
extension to the atom-centered view. Furthermore, the physics
of SrMnO3 is different from SrVO3, since the manganate is
an insulator, and thus it constitutes a challenge for the FTPS
solver. While we presented a proof of concept for FTPS on
a simple five-band model before [20], we now perform full
five-band real-frequency DFT+DMFT calculations for both
d-only and d-dp models.
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We find that the choices made for the correlated subspace
strongly affect the resulting spectral function and its physical
interpretation. Additionally, we show that the interplay of
atomic and hybridization physics can already be found in very
simple toy models.

This paper is structured as follows. In Sec. II we discuss the
methods employed, namely DFT, the different models obtained
from different Wannier constructions, DMFT, and the impurity
solvers used. Section III focuses on the results of the DMFT
calculations and the underlying physics of these different mod-
els. This knowledge will then be used in Sec. IV to compare
the spectral function to experiments by Kim et al. [12].

II. METHOD

A. DFT and Wannier basis

We start with the DFT density of states (DOS) from a non-
spin-polarized DFT calculation for SrMnO3 in the cubic phase
(shown in Fig. 1). The calculation was performed with WIEN2K

[21], using 969 k points in the irreducible Brillouin zone and
a lattice parameter of a = 3.768 Å. Around the Fermi energy
EF , SrMnO3 has the characteristic steeplelike-shaped DOS,
stemming from the Mn-t2g bands with a bit of O-px/y contribu-
tion. Below −2.0 eV, the DOS is mainly determined by oxygen
bands which also exhibit manganese hybridizations. With the
exception of some additional weight below −5.0 eV, the Mn-
eg states lie mainly in the energy range from 0.0 eV to 5.0 eV.

In this work we use projective Wannier functions, where an
energy interval has to be chosen as a projection window [4,5].
The bands around EF have mainly t2g character, suggesting a
selection of only a narrow energy window for the Wannier
function construction (−2.0−0.82 eV). We call this set of
projective Wannier functions the three-band d-only model.
However, the t2g orbitals also show a considerable hybridiza-
tion with the O-2p states below −2 eV, and hence, one might
want to enlarge the projective energy window by setting its
lower boundary to −10 eV. We refer to this model as the
three-band d-dp model.

At the same time, we realize that also the eg orbitals are
not entirely separated from the t2g orbitals in energy and that
they have even some weight around EF (see middle graph of
Fig. 1). These states lie directly above EF and therefore their
influence on the resulting spectrum needs to be checked. One
should then use a window capturing five bands, the eg and t2g , as
a correlated subspace (from −2 to 5 eV). This is a five-band d-
only model. Note that empty orbitals do not pose a problem for
the FTPS solver. Like before, we can again enlarge the energy
window to include the oxygen hybridization (−10−5 eV). We
denote this model as the five-band d-dp model.

In total, we end up with four different choices. The settings
for these four models are summarized in Table I. All of them
are justified, have different descriptive power, and have been
employed in various DFT+DMFT calculations for SrMnO3

[13,14,16].

B. DMFT

Once the correlated subspace is defined, we use DMFT
[2,3,22,23] to solve the resulting multiband Hubbard model.
As interaction term we choose the 5/3-band Kanamori Hamil-
tonian [24,25]. Within DMFT, the lattice problem is mapped
self-consistently onto an Anderson impurity model (AIM) with
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FIG. 1. Top: Total DFT-DOS for SrMnO3. Middle: partial Mn-3d

DOS. Bottom: partial O-2p DOS for SrMnO3. Below approximately
−1.5 eV, the band structure consists of oxygen bands that have mostly
p character but also have some eg and t2g weight due to hybridizations.
The t2g bands are located around the Fermi energy from −1.5 eV to
about 0.5 eV, which have small p character. Directly above the Fermi
energy and partly overlapping with the t2g bands we find the eg bands
that have small p contributions as well.

the Hamiltonian

H = Hloc + Hbath,

Hloc =
∑
mσ

εm0nm0σ + HDD + HSF-PH,

HDD = U
∑
m

nm0↑nm0↓

+ (U − 2J )
∑

m′>m,σ

nm0σ nm′0σ̄

+ (U − 3J )
∑

m′>m,σ

nm0σ nm′0σ ,

HSF-PH = J
∑

m′>m

(c†m0↑cm0↓cm′0↑c
†
m′0↓ + H.c.)

− J
∑

m′>m

(c†m0↑c
†
m0↓cm′0↑cm′0↓ + H.c.),

115156-2



DYNAMICAL MEAN-FIELD THEORY ON THE REAL- … PHYSICAL REVIEW B 97, 115156 (2018)

TABLE I. Summary of models with their projective energy windows and the parameters used in the FTPS solver: number of bath sites
NB , Fourier transform broadening ηFT , truncated weight tw , and maximal bond dimension allowed for the links between impurities as well as
for the links between an impurity and the first bath tensor. We keep at most this number of states and increase tw if needed. The number in
brackets is the maximal bond dimension during ground state search, while the first number is used for the time evolution. The bath links were
not restricted to any maximal bond dimension. The FTPS time evolution is performed up to tmax, given in eV−1.

Model Window (eV) Comments NB ηFT tw Bond dim. tmax

Three-band d only −2.0−0.82 Only major t2g weight around EF 79 0.08 5 × 10−9 14.0
Five-band d only −2.0−5.0 Include eg , neglect hybridizations 49 0.15 1 × 10−8 200 (150) 12.0
Three-band d-dp model −10.0−5.0 Include hybridized t2g weight on oxygen bands 59 0.1 1 × 10−8 450 (150) 14.0
Five-band d-dp model −10.0−5.0 t2g and eg bands with hybridizations 49 0.2 1 × 10−8 200 (150) 7.0

Hbath =
∑

mlσ

εmlnmlσ + Vml(c
†
m0σ cmlσ + H.c.). (1)

Here, c
†
mlσ (cmlσ ) creates (annihilates) an electron in orbital

m, with spin σ at site l (site zero is the impurity). nmlσ

are the corresponding particle number operators. εm0 is the
orbital dependent on-site energy of the impurity and εml as
well as Vml are the bath on-site energies and the bath-impurity
hybridizations, respectively.

The interaction part of Hamiltonian (1), HDD + HSF-PH,
is parametrized by a repulsive interaction U and the Hund’s
coupling J . For each of the models presented in Table I, we
choose these parameters ad hoc in order to obtain qualitatively
reasonable results. In addition, for the full five-band d-dp
model we also estimate them quantitatively via a comparison
to an experiment.

Within DFT+DMFT, a so-called double counting (DC) cor-
rection is necessary, because part of the electronic correlations
are already accounted for by DFT. For general cases, exact
expressions for the DC are not known, although there exist
several approximations [26–29]. In the present work we use the
fully localized-limit (FLL) DC [Eq. (45) in Ref. [30]]. When
needed, we adjust it to account for deviations from the true,
unknown DC. Note that in the d-only models, the DC is a trivial
energy shift that can be absorbed into the chemical potential
[28], which is already adjusted to obtain the correct number of
electrons in the Brillouin zone. This step, as well as all other
interfacing between DFT and DMFT, is performed using the
TRIQS/DFTTOOLS package (v1.4) [5,31–33].

C. CTQMC + MaxEnt

We compare some of our results to CTQMC data
at an inverse temperature of β = 40 eV−1 obtained with
the TRIQS/CTHYB solver (v1.4) [17,34]. We calculate real-
frequency spectra with an analytic continuation using the
freely available �-MaxEnt implementation of the maximum
entropy (MaxEnt) method [35]. However, the analytic contin-
uation fails to reproduce high-energy structure in the spectral
function, as we have shown in Ref. [20] in the example
of SrVO3. This is especially true when the imaginary-time
Green’s function is subject to statistical noise, which is inherent
in Monte Carlo methods.

There are in general two quantities for which one can
perform the analytic continuation. First, one can directly
calculate the real-frequency impurity Green’s function from
its imaginary time counterpart (as done in Fig. 7). Second,

one can perform the continuation on the level of the impurity
self-energy [36] and then calculate the local Green’s function
of the lattice model (as done in Fig. 8). In the latter case, the
DFT band structure enters on the real-frequency axis, which
increases the resolution of the spectral function.

D. FTPS

For all models studied we employ FTPS [20]. This recently
developed impurity solver uses a tensor network geometry
which is especially suited for AIMs. The first step of this
temperature T = 0 method is to find the absolute ground
state including all particle number sectors with DMRG [37].
Then the interacting impurity Green’s function is calculated
by real-time evolution. Since entanglement growth during
time evolution prohibits access to arbitrary long times [38],
we calculate the Green’s function up to some finite time
(see Table I) and predict the time series using the linear
prediction method [20,39] up to timesO(100 eV−1). The linear
prediction could potentially produce artifacts in the spectrum,
and therefore we always make sure that every spectral feature
discussed in this work is already present in the finite-time
Green’s function without linear prediction.

The main approximations that influence the result of the
FTPS solver are the broadening ηFT used in the Fourier
transform [40], and the truncation of the tensor network [20].
The former corresponds to a convolution with a Lorentzian
in frequency space making its influence predictable, while
the truncation can be controlled by including more states.
This control over the approximations allows us to analyze
spectral functions in greater detail than what would be possible
with CTQMC+MaxEnt. The parameter values for our FTPS
calculations are listed in Table I.

Note that we choose ηFT larger than in our previous work
[20]. The reason for doing this is twofold: First, some of the cal-
culations we show in this work have a large bandwidth, which
lowers the energy resolution if we keep the number of bath sites
fixed. Second, FTPS uses a discretized bath to represent the
continuous noninteracting lattice Green’s functionGcont

0 . When
calculating the self-energy � = G−1

0 − G−1, we can either use
the discretized version of Gdiscr

0 or the continuous one, Gcont
0 .

In this work we choose Gdiscr
0 , which is formally the correct

choice. This then requires us to use a larger broadening to
obtain causal self-energies that do not show finite discretization
effects from inverting Gdiscr

0 . However, when calculating the
final impurity spectral function shown in all figures, we employ
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a very small broadening of ηFT = 0.01 eV in order to obtain
optimal resolution.

The real-frequency approach of FTPS allows us to
resolve spectral features with higher precision than
CTQMC+MaxEnt. This is especially true for high-energy
multiplets. On the other hand, with FTPS and real-time
evolution it is difficult to obtain perfect gaps, since the results
are less precise at small ω, encoded in the long-time properties
of the Green’s function which we obtain only approximately
using linear prediction [39].

With FTPS we calculate the greater and lesser Green’s
functions separately [20]. Since the greater (lesser) Green’s
function has no contribution at ω < 0 (ω > 0) we restricted the
contributions of the calculated Green’s functions in frequency
space.

III. RESULTS

A. d-only models

First we focus on d-only calculations using a projective
energy window with a lower energy boundary of −2.0 eV
for the Wannier-function construction, neglecting the occupied
Mn-3d weight at lower energies (see Table I and the middle
graph of Fig. 1). With this choice of the correlated subspace,
the occupation of the eg orbitals is nearly zero and the three
degenerate t2g orbitals are half filled.

Three-band calculation

Considering only the t2g subspace, the resulting impurity
spectral function (Fig. 2) is gapped for the chosen interaction
values. The peaks of the lower and upper Hubbard bands are
separated by 5.0 eV in energy, which is roughly U + 2J =
5.2 eV, as expected from atomic physics [41].

Contrary to SrVO3, where a distinct three-peak multiplet
structure in the upper Hubbard band is present [20], both
SrMnO3 Hubbard bands show only one dominant peak. The
structure observed in SrVO3 was well explained by the atomic
multiplets of the interaction Hamiltonian Hloc in Eq. (1) for a
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FIG. 2. Three-band d-only calculation: t2g correlated spectral
function for U = 4.0 eV and J = 0.6 eV, as well as eg DFT-DOS.
The t2g spectrum shows a Mott insulator at half filling with pro-
nounced lower and upper Hubbard bands.

ground state with one electron occupying the t2g orbitals. The
absence of such an atomic multiplet structure in this model
for SrMnO3 can be understood in a similar way: The large
Coulomb repulsion in combination with Hund’s rules (due
to the density-density interaction strengths U , U − 2J , and
U − 3J ) lead to a ground state |ψ0〉 which consists mostly
of the states |↑,↑,↑〉 and |↓,↓,↓〉 on the impurity. Adding
a particle, when calculating the Green’s function, produces
a single double occupation, e.g., c

†
1,↓ |ψ0〉 = |↑↓,↑,↑〉. This

state is an eigenstate of the atomic Hamiltonian, because it
is trivially an eigenstate of HDD, and both the spin-flip and
pair-hopping terms annihilate this state. Hence, all t2g single-
particle excitations from the ground state have the same energy,
and as a consequence, only one atomic excitation energy is
observed.

Although not included in the low-energy model, the uncor-
related states still need to be taken into account for the single-
particle gap of SrMnO3. On the unoccupied side, the onset of
the eg orbitals leads to a reduction of the single-particle gap to
about half the size of the t2g gap (see Fig. 2). On the occupied
side, depending on U and J , either the lower Hubbard band
or the O bands (at about −1.5 eV) determine the gap size,
and thus also the type of the insulating state (Mott or charge
transfer insulator [42]). For SrMnO3 to be clearly classified as
Mott insulator,U + 2J < 3.0 eV would be required. However,
it is questionable if the d-only picture is correct, as in this
case the lower Hubbard band is not influenced by the t2g/O-2p

hybridizations between −6.0 and −2.0 eV (see Fig. 1). We will
discuss the effect of these hybridizations in detail in Secs. III B
and III C.

Five-band calculation

Next, we add the eg orbitals to the correlated subspace,
which now comprises the full Mn-3d manifold. The resulting
impurity spectral functions of the eg and t2g orbitals are
shown in Fig. 3. The t2g spectral weight does not change
much compared to the three-band calculation. This is to be
expected, because the eg orbitals remain nearly empty during
the calculation of the t2g Green’s function.
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FIG. 3. Five-band d-only calculation: correlated spectral function
of the eg and the t2g orbitals for U = 4.0 eV and J = 0.6 eV.
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The eg spectral function, on the other hand, becomes much
broader in comparison to the DFT-DOS, showing spectral
weight above 4.5 eV. The unoccupied part of the spectrum
is encoded in the greater Green’s function, i.e., adding a
particle in an eg orbital to the ground state. If we again assume
|ψ0〉 ∝ |↑,↑,↑〉 + |↓,↓,↓〉 as the t2g ground state, we can add
a particle to the eg orbitals either in a high-spin or low-spin
configuration:

c
†
eg↑ |ψ0〉 ∝ |↑,↑,↑〉︸ ︷︷ ︸

t2g

⊗ |↑,0〉︸ ︷︷ ︸
eg

+|↓,↓,↓〉 ⊗ |↑,0〉. (2)

Using the Kanamori Hamiltonian, the high-spin configuration
[first term in Eq. (2)] generates a single atomic excitation
energy, while the low-spin configuration [second term in
Eq. (2)] leads to two energies (due to the spin-flip terms).
According to this atomistic picture, the splitting of the eg

peaks is proportional to Hund’s coupling J (see Fig. 3). Their
position relative to the upper t2g Hubbard band is influenced
by the crystal-field splitting and J . From this clear atomiclike
structure we see that even empty orbitals need to be included
in the correlated subspace because of correlation effects with
other occupied orbitals.

B. Three-band d-dp model

In the energy region where the lower Hubbard band is
located, we also find t2g weight stemming from the Mn-3d/O-
2p hybridization (see the middle plot of Fig. 1). This suggests
that those states should be included in the construction of
the projective Wannier functions, i.e., a d-dp model. In the
following we will use the term high-energy spectral weight
(HESW) to denote the Wannier function weight on the oxygen
bands (located below −1.5 eV). The first and most obvious
consequence of a larger projective energy window is an
increased bandwidth of the Wannier DOS. To obtain a similar
insulating behavior as in the d-only model we increase U

and J . Second, now also the DC correction has a nontrivial
effect, since it shifts the correlated t2g states relative to the
oxygen bands. The t2g weight on the oxygen bands is rather
small, which means that the effect of the DC correction on the
HESW is equally low. Third, in the three-band d-dp model
the impurity occupation grows (the exact value depending on
U and J ), changing the character of the ground state to a mix
of states with mainly three and four particles on the impurity,
while in the three-band d-only calculation the occupation of the
impurity was three electrons. Due to the increased complexity
of the ground state, we expect a richer dependence of the
spectrum on the interaction parameters U and J .

In Fig. 4 we compare calculations for different values
of J (top) and different values of U (bottom). Overall, the
spectral functions consist of a (smaller) lower Hubbard band
connected to states from the hybridized oxygen bands and
an upper steeplelike Hubbard band of similar shape as in
the d-only calculation. By comparing the two peaks at −6.0
and −8.0 eV, we observe that they behave differently when
changing U or J . While the former is only affected by J , the
latter is not, but shifts with U . The resolution of the structure
in the lower-Hubbard-band/HESW complex demonstrates the
capabilities of the FTPS solver.
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FIG. 4. Three-band d-dp model: spectral functions for different
J (top) and different U (bottom). All interaction parameters are given
in eV. Upon increasing both parameters the gap increases. Changing
J shifts the peak at around −6.0 eV, while changing U only shifts
the one at −8.0 eV.

The t2g gap grows when increasing either U or J , which is a
typical sign of Mott physics at half filling [41]. Nevertheless, in
the d-dp model the gap size increases slowly: when increasing
U by 1.0 eV, the gap only grows by about half of that.
Considering also the uncorrelated eg orbitals, we observe that
the single-particle gap is not much affected by the interaction
values studied. An artificial lowering of the DC correction
by −0.5 eV, which corresponds to a relative shift in energy
between the correlated subspace and the uncorrelated states,
also increases the t2g gap (Fig. 5). This growth of the gap is
mostly due to a shift of the t2g upper Hubbard band, since
the chemical potential is pinned by the eg bands [43]. The
first excitation below EF has a mix of t2g and O-p character.
This indicates that in this model, SrMnO3 is not a pure Mott
insulator, but a mixture between Mott and charge-transfer
insulator. This classification is consistent with previous results
[8,9,11,13].

Let us employ a simple toy model to qualitatively under-
stand this intermediate regime. We use a correlated site coupled
to only one noninteracting site:

H = U (n0,↑ − 0.5)(n0,↓ − 0.5)

+
∑

σ

V1(c†0,σ c1,σ + H.c.) + ε1n1,σ . (3)
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FIG. 5. Three-band d-dp model: effect of the DC correction. Top:
FLL DC. Bottom: FLL DC with an additional shift of −0.5 eV. U =
5.0 eV and J = 0.7 eV are used as interaction parameters. Contrary
to all other figures, in this plot we show the spectrum of the correlated
local Green’s function. The occupation of the t2g orbitals changes
from 0.55 (no DC shift) to 0.54 (DC shift =−0.5 eV) indicating that
the t2g occupation is not much affected by the DC. The DFT-DOS
(Fig. 1) already gives an occupation of 0.54.

The purpose of the noninteracting site is to mimic the effect
of the HESW. We set the on-site energy to ε1 = −2.0 eV and
use a coupling to the impurity of V1 = 1.0 eV. Since we want
to understand the occupied part of the spectrum, we focus on
negative energies only. In Fig. 6 we show the resulting spectral
functions (ω < 0) for various values of the interaction strength
U (full lines). The atomic excitation spectra of this model
(corresponding to V1 = 0), whose peaks are positioned exactly
at −U/2, are indicated by dotted lines. This toy model shows
three important features:

(i) The peak highest in energy (above −2.0 eV) corresponds
to the lower Hubbard band for small values of U [44]. We see
that it does not cross the on-site energy ε1 with increasing U ,
but approaches it asymptotically. The bath site repels this level
and upon increasing U its weight decreases.

(ii) The peak lowest in energy shows the opposite behavior.
The uncorrelated site repels it towards lower energies and the
spectral weight increases when we increase U . For large U

this level asymptotically approaches the atomic limit at energy
−U/2 and eventually becomes the lower Hubbard band. These
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ω (eV)
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U = 1.5 eV

U = 4.0 eV

U = 6.5 eV

U = 9.0 eV

U = 11.5 eV

FIG. 6. Spectrum of a one-band AIM with one interacting site
coupled to a single noninteracting site [Eq. (3)]. The spectrum is
calculated with the absolute ground state over all particle number
sectors. The on-site energy ε1 is shown as gray dashed-dotted vertical
line. The gray dashed lines visualize the evolution of the location
of the three peaks as a function of the interaction strength U . The
colored dotted peaks show the atomic spectrum with peaks at −U/2.
The upper Hubbard band (additional peak at ω > 0) is not shown. All
spectra have been broadened by ηFT = 0.2 eV.

two peaks together form what one could call a split lower
Hubbard band.

(iii) The excitation at the on-site energy ε1 shifts to lower
energy and splits under the influence of U . Upon increasing
U , one part develops into the lower Hubbard band discussed
above, and the other approaches ε1 from below, with diminish-
ing weight.

The DMFT spectral functions (Fig. 4) also show roughly
a three-peak structure, where the peaks at about −1.5 eV
(−8.0 eV) could be the first (last) peak of the split lower
Hubbard band of our toy model. The region in between
then corresponds to the small, middle peak in the toy model
stemming from the HESW.

The repulsion of the first peak explains why increasing U

(Fig. 4, lower graph) has only a relatively weak effect on the
size of the gap. On the other hand, effectively shifting the
oxygen bands with the DC correction to lower energies (Fig. 5)
corresponds to shifting the bath energy ε1. This means that the
repulsion gets weaker, which explains the growth of the gap.
Furthermore, when increasing U we find that the peak highest
in energy gets smaller, while spectral weight is transferred to
the lowest energy peak, which is also shifted to lower energies
(Fig. 4). Additionally, a lowering of the DC correction leads to
an opposite behavior, where the first peak below EF grows at
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the expense of the lowest one in energy. Note that the middle
region of our DMFT spectrum shows a J dependence (Fig. 4,
top), which cannot be explained by a one-orbital toy model.
Using a similar toy model with two orbitals and Kanamori
interaction, we indeed observe a splitting proportional to J in
the spectra (not shown here). Since the effect is small we will
refrain from discussing it in more depth.

We emphasize that the close relation between the toy model
and the actual impurity Green’s function of SrMnO3 in the
d-dp model suggests that the HESW has the effect of splitting
the lower Hubbard band into two bands; their separation
increases with the hybridization strength. Therefore, including
the oxygen states in the model strongly influences the size of
the gap.

C. Five-band d-dp model

From the DFT-DOS in Fig. 1, we see that the eg orbitals are
actually not empty. They possess additional spectral weight
at around −7.0 eV, stemming from hybridizations with the
oxygen bands. Similarly to the previous section where we
included hybridizations of t2g and O-2p, we now also include
the hybridizations of eg and O-2p.

As mentioned at the beginning, only approximations to the
DC correction are known. For the present five-band calculation
we find that using the FLL DC does not produce a pronounced
gap. This can be traced back to the additional hybridizations
of eg with O-2p (see discussion below). Furthermore, the
FLL formula is based on five degenerate orbitals. In the case
at hand we find an approximately half filled t2g impurity
(〈nt2g0σ 〉 ≈ 0.5) and about one electron in total on the eg part
of the impurity (〈neg0σ 〉 ≈ 0.2). One therefore needs to adapt
the DC correction to reproduce experimental results. In order
to obtain a pronounced gap, we decrease the FLL DC energy
by 2.0 eV. Note that it has been argued that very often the
FLL-DC is too high [26]. A reduction of the DC can also
be accomplished by adjusting U in the FLL formula [13,27].
While we find that the t2g occupation is not much affected by
the DC (similar to Fig. 5), its effect on the eg occupation is
much stronger. Without a DC shift, we find 〈neg0σ 〉 ≈ 0.30,
while for a shift by −2.0 eV the occupation is 〈neg0σ 〉 ≈ 0.19
compared to 〈neg0σ 〉 ≈ 0.28 in the DFT calculation.

Figure 7 shows the spectral function of the full five-band
d-dp calculation with adjusted DC as well as the respective
spectral function obtained by a DMFT calculation using
CTQMC and performing the analytic continuation for the
impurity Green’s function. Overall, the FTPS spectrum is in
good agreement with the CTQMC+MaxEnt result. However,
FTPS provides a much better energy resolution at high ener-
gies, which is especially apparent from the pronounced peak
structure in the eg spectrum.

Instead of calculating the real-frequency spectrum of the
impurity Green’s function as in Fig. 7, one can use the
analytic continuation for the self-energy �(ω), and calculate
the local Green’s function of the lattice model directly for real
frequencies. This way, the dispersion of the DFT band structure
enters on the real frequency axis directly, which increases the
resolution of the CTQMC result, but is suboptimal for FTPS
[45]. The resulting spectral function for the eg orbitals is shown
in Fig. 8. As expected, we find that some features shown by
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FTPS eg
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−15 −10 −5 0 5 10
0

0.1

0.2
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)
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FTPS t2g

FIG. 7. Comparison of the spectral functions for the five-band
d-dp model between FTPS and CTQMC+MaxEnt using the impurity
Green’s function. Top: eg orbitals. Middle: t2g orbitals. For both
calculations we use U = 6.0 eV and J = 0.8 eV. Bottom: Combined
spectral function.

the FTPS solver are now also present in CTQMC, but the J

multiplet in the unoccupied part of the spectrum still cannot
be resolved. To calculate the FTPS self-energy, used to obtain
the spectrum in Fig. 8, a broadening of ηFT = 0.25 was used,
which explains the difference from Fig. 7.

From these comparisons we also see that the sharp, steplike
shape of the eg spectrum at EF is not an artifact of the FTPS
solver. We note that for the five-band calculation presented in
Fig. 7, FTPS (720 CPU-h) and CTQMC (600 CPU-h) need
similar computational effort for one DMFT iteration [46].

The unoccupied part of the total spectrum (sum of the eg

and t2g spectra shown in the bottom plot of Fig. 7) consists
of a three peak structure with alternating eg-t2g-eg character,
which is much more pronounced than in the five-band d-only
calculation (Fig. 3). Compared to the three-band d-dp model
we find differences mainly in the occupied part of the t2g

spectral function (Fig. 10). This is especially apparent in the
lowest peak, which seems to be shifted from −9.0 to −13.0 eV.
Although this high-energy excitation is small, the FTPS solver
can reliably resolve it.
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FIG. 8. Comparison of the eg spectral functions of the local lattice
Green’s function for the five-band d-dp model between FTPS and
CTQMC+MaxEnt, when the analytic continuation is performed for
the self-energy. To obtain the plot with FTPS we used ηFT = 0.25.
Using the band structure on the real-frequency axis enhances the
resolution of the CTQMC result at energies where the imaginary part
of the self-energy is small, and increases its agreement with FTPS in
the occupied part of the spectral function.

The differences in the position of this peak are again similar
to the behavior of a toy model. Here we use a two-orbital AIM
with a single bath site for each orbital:

H = Hint +
∑

m∈(t2g,eg )

Emn0,m

+
∑

σ

Vm(c†0,m,σ c1,m,σ + H.c.) + εmn1,m,σ . (4)

For the interaction Hint we choose the Kanamori Hamiltonian.
As before, we use a single bath site for each orbital to mimic
the effect of the HESW. We are interested in the influence
of the hybridizations of eg and O-2p on the t2g spectral
function. In Fig. 9, we compare the spectrum without eg-
HESW states (Veg

= 0) with the one obtained from Veg
= 2Vt2g

[47]. Although one would expect the eg hybridization to only
have a minor influence on the t2g spectrum, we observe a
rather surprising behavior. The additional hybridization leads
to a stronger repulsion of the lowest energy peak from the
bath energy, qualitatively explaining the shift from −9.0 to
−13.0 eV in Fig. 10.

Additionally, this toy model provides an explanation for
the necessary adjustment of the DC correction in the five-band
calculation: The peak highest in energy in Fig. 9 is repelled
more strongly with the additional eg hybridizations, therefore
the gap decreases. If we would want to obtain a similar t2g gap
as with Veg

= 0, the interaction in the toy model would need to
be increased to U ≈ 20 eV (keeping J = U/10). Since this is
unphysical, the only other option is to shift the bath site energies
of the toy model. In the DMFT calculation this corresponds to
a shift in the DC correction, effectively shifting the HESW
to lower energies. This behavior can be observed in Fig. 10,
where we compare the spectra of the three- and five-band d-dp
models. The onset of the lower-Hubbard-band/HESW complex
is exactly at the same position in both spectra, although the DC
shift differs by 2.0 eV.

−12 −10 −8 −6 −4 −2 0

ω (eV)

A
(ω

)

Veg = 0

Veg = 2Vt2g

FIG. 9. Effect of the eg hybridizations on the t2g spectrum of the
toy model [Eq. (4)]. Parameters (in eV): U = 10.0, J = U/10, Et2g

=
−U/2, Eeg

= −U/2 + 1.0, εt2g
= εeg

= −5.0, and Vt2g
= 1.5. The

grey dashed dotted line shows the bath energy levels. All spectra have
been broadened by ηFT = 0.2 eV.

IV. COMPARISON TO EXPERIMENT

Equipped with a good understanding of the model-
dependent effects on the spectral function, we are finally in a
position to compare our results to experiments. Several studies
concluded that the unoccupied part of the spectrum consists of
three peaks with alternating eg- t2g- eg character [10–12]. As
we have shown, with DMFT+FTPS we are able to resolve such
a structure when including the eg states as correlated orbitals

−15 −10 −5 0 5 10
0

0.2

0.4

0.6

ω (eV)

A
(ω

)

three-band d-dp, no DC shift

five-band d-dp, DC shift = -2.0 eV

FIG. 10. Comparison of the t2g spectral functions of the three-
band d-dp and five-band d-dp calculations at U = 6.0 eV and J =
0.8 eV, taken from Figs. 4 and 7. In the five-band calculation we
shifted the double counting by −2.0 eV to increase the gap. The
influence of the number of bands is most apparent in the high-energy
features. The increased repulsion of the first peak of the lower-
Hubbard-band/oxygen complex (Fig. 9) makes a shift in the DC
necessary, if the single-particle gap should remain the same.
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in a genuine five-band model. Additionally, we need to choose
the energy window, i.e., whether the HESW should be included
in the construction of the projective Wannier functions. The
nature of the insulating state (Mott or charge transfer) has been
debated in the literature [8,9,11,13], but it is likely that SrMnO3

falls in an intermediate regime where a clear distinction is diffi-
cult. In the present work we have come to the same conclusion.
This implies that the lower Hubbard band and the O-2p bands
are not separated in energy, which favors the use of a d-dp
model. We therefore conclude that a five-band d-dp model is
necessary to fully capture the low-energy physics of SrMnO3.

Having decided on the model for the correlated subspace,
we still need to determine the interaction parameters U and J

as well as the DC. To do so we use PES and XAS data for the
Mn-3d orbitals obtained by Kim et al. [12] and compare to
our total impurity spectrum [6At2g

(ω) + 4Aeg
(ω) from Fig. 7].

According to Ref. [12], the XAS (PES) spectrum can be
considered to represent the unoccupied (occupied) Mn-3d

spectrum. In the measured spectrum the chemical potential
is in the middle of the gap. In all our calculations, the chemical
potential is determined by the onset of the unoccupied eg

spectrum. However, the absolute position in energy is not
exactly known in XAS [48]. Our calculation is in good
agreement with the experiment when we use a rigid shift of
the XAS spectrum by 0.8 eV to lower energies. Additionally,
we deduce from the peak positions in the experiment that the
interaction parameters used for the calculations presented in
Fig. 7 are too high. The separation of the two eg peaks (∼J )
and also the relative position of the t2g upper Hubbard band
are different than in the experiment. Therefore, we decrease
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)
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DMFT-FTPS

e↑g

t↓2g

e↓g

FIG. 11. Photoemission spectroscopy (PES) and x-ray-
absorption spectroscopy (XAS) compared to the five-band
d-dp DMFT-FTPS results (U = 5.0 eV and J = 0.6 eV). The
experimental curves are reproduced from Ref. [12], Fig. 5. We
normalized the experimental curves to

∫ 0
−9 APESdω = ∫ 0

−9 AFTPSdω

and
∫ 6

0 AXASdω = ∫ 6
0 AFTPSdω. FTPS as well as the experiments

show a three-peak structure of alternating eg- t2g- eg character in
the unoccupied part of the spectrum (indicated by arrows). For the
arrow labels we adopted the notation of Ref. [12], where e↑

g means

an excitation into the eg spectrum with majority spin, while t
↓
2g and

e↓
g are excitations into the t2g and eg spectrum with minority spin

[see also Eq. (2)].

the interaction parameters to U = 5.0 eV and J = 0.6 eV but
keep the static shift of the FLL DC by −2.0 eV. Note that these
parameters are similar to the ones used in other DFT+DMFT
studies on SrMnO3 [13,14].

The resulting spectral function for the new set of parameters
is compared to the experimental spectrum in Fig. 11. Notably,
the bandwidths of both the unoccupied and the occupied
spectrum agree very well with the experiment. The unoccupied
part of the experimental spectrum (XAS) shows that the first eg

peak is just a shoulder of the t2g upper Hubbard band, and that
the separation of the two eg peaks is about 3.2 eV, which is in
agreement with our result. Since this separation is proportional
to the Hund’s coupling, we conclude that J ≈ 0.6 eV for this
compound. The t2g upper Hubbard band at 2.0 eV is still
slightly too high in energy.

The experiment also shows a lower-Hubbard-band/oxygen
complex with two main peaks at about −6.0 and −2.0 eV.
As discussed in the previous sections (bottom plot of Fig. 7),
our results identify the first peak at −2.0 eV to have mainly
t2g character and to correspond to the largest part of the split
lower Hubbard band, whereas the second peak at −6.0 eV
has both eg and t2g character and stems from the hybridiza-
tions with the oxygen bands. We note that the region be-
tween these two peaks has larger spectral weight in the
experiment than in our calculations. Importantly, no promi-
nent spectral features are observed in the experiment around
−8.0 eV, strengthening our conclusion that the three-band
d-dp model is not sufficient to describe the experiment (see
also Fig. 10).

V. CONCLUSIONS

We have studied the influence of the choice of the correlated
subspace, i.e., the number of bands and the energy window, on
the DFT+DMFT result for the strongly correlated compound
SrMnO3. For d-only models (neglecting p-d hybridizations),
we have shown that the empty eg orbitals should be included
in the correlated subspace because interactions with the half
filled t2g bands affect the spectrum, leading to a multiplet
structure and a broadening of the eg DFT-DOS. Including
the Mn-3d/O-2p hybridizations in a three-band model for the
t2g bands only, i.e., the three-band d-dp model, we found
a situation similar to avoided crossing, which leads to an
interesting interplay of atomic physics (lower Hubbard band)
and Mn-d/O-p hybridizations. In SrMnO3, the lower Hubbard
band hybridizes with the t2g Wannier weight on the oxygen
bands, giving rise to a spectrum that can be approximated
by three peaks. This result provides different perspectives on
an intermediate regime, where both Mott and charge transfer
physics are found. By performing a five-band calculation
including the p-d hybridization, we investigated the effect
of the eg hybridization on the t2g spectrum. The splitting
due to avoided crossing is heavily increased, which strongly
affects the three-peak structure and also decreases the gap.
Equipped with a good understanding of the different correlated
subspaces and the effects of the model parameters (U , J , DC)
we were able to obtain a spectral function in good agreement
with experimental data. We conclude that the choice of a
suitable model for the correlated subspace is important, since
the inclusion of both the O-2p hybridizations and the eg states
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is essential for a correct description of the observed spectral
function in SrMnO3.

Finally, we would also like to stress that we have shown
that FPTS is a viable real-time impurity solver for real material
calculations with five bands.
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